46 research outputs found
Crystal plasticity finite element simulation of lattice rotation and x-ray diffraction during laser shock compression of tantalum
We present a crystal plasticity model tailored for high-pressure, high-strain-rate conditions that uses a multiscale treatment of dislocation-based slip kinetics. We use this model to analyze the pronounced plasticity-induced lattice rotations observed in shock-compressed polycrystalline tantalum via in situ x-ray diffraction. By making direct comparisons between experimentally measured and simulated texture evolution, we can explain how the details of the underlying slip kinetics control the degree of lattice rotation that ensues. Specifically, we show that only the highly nonlinear kinetics caused by dislocation nucleation can explain the magnitude of the rotation observed under shock compression. We demonstrate a good fit between our crystal plasticity model and x-ray diffraction data and exploit the data to quantify the dislocation nucleation rates that are otherwise poorly constrained by experiment in the dynamic compression regime
Pressure-induced bcc-rhombohedral phase transition in vanadium metal
Vanadium is reported to undergo a pressure-induced bcc-rhombohedral phase transition at 30–70 GPa, with a transition pressure that is sensitive to the hydrostaticity of the sample environment. However, the experimental evidence for the structure of the high-pressure phase being rhombohedral is surprisingly weak. We have restudied vanadium under pressure to 154 GPa using both polycrystalline and single-crystal samples, and a variety of different pressure transmitting media (PTM). We find that only when using single-crystal samples does one observe a rhombohedral high-pressure phase; the high-pressure diffraction profiles from the polycrystalline samples do not fit a rhombohedral lattice, irrespective of the PTM used. The single-crystal samples reveal two rhombohedral phases, with a continuous transition between them, and distortions from cubic symmetry are much smaller than previously calculated
X-ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10-70 GPa
We report experiments in which powder-diffraction data were recorded from polycrystalline vanadium foils, shock-compressed to pressures in the range of 10-70 GPa. Anisotropic strain in the compressed material is inferred from the asymmetry of Debye-Scherrer diffraction images and used to infer residual strain and yield strength (residual von Mises stress) of the vanadium sample material. We find residual anisotropic strain corresponding to yield strength in the range of 1.2 GPa-1.8 GPa for shock pressures below 30 GPa, but significantly less anisotropy of strain in the range of shock pressures above this. This is in contrast to our simulations of the experimental data using a multi-scale crystal plasticity strength model, where a significant yield strength persists up to the highest pressures we access in the experiment. Possible mechanisms that could contribute to the dynamic response of vanadium that we observe for shock pressures ≥30 GPa are discussed
Experimental observation of open structures in elemental magnesium at terapascal pressures
Investigating how solid matter behaves at enormous pressures, such as those found in the deep interiors of giant planets, is a great experimental challenge. Over the past decade, computational predictions have revealed that compression to terapascal pressures may bring about counter-intuitive changes in the structure and bonding of solids as quantum mechanical forces grow in influence1,2,3,4,5,6. Although this behaviour has been observed at modest pressures in the highly compressible light alkali metals7,8, it has not been established whether it is commonplace among high-pressure solids more broadly. We used shaped laser pulses at the National Ignition Facility to compress elemental Mg up to 1.3 TPa, which is approximately four times the pressure at the Earth’s core. By directly probing the crystal structure using nanosecond-duration X-ray diffraction, we found that Mg changes its crystal structure several times with non-close-packed phases emerging at the highest pressures. Our results demonstrate that phase transformations of extremely condensed matter, previously only accessible through theoretical calculations, can now be experimentally explored
Femtosecond X-Ray Diffraction Studies of the Reversal of the Microstructural Effects of Plastic Deformation during Shock Release of Tantalum
We have used femtosecond x-ray diffraction (XRD) to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37-253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics (MD) simulations the lattice rotation and the twins that are formed under shock-compression are observed to be almost fully eliminated by the rarefaction process
Coordination changes in liquid tin under shock compression determined using in situ femtosecond x-ray diffraction
Little is known regarding the liquid structure of materials compressed to extreme conditions, and even less is known about liquid structures undergoing rapid compression on nanosecond timescales. Here, we report on liquid structure factor and radial distribution function measurements of tin shock compressed to 84(19) GPa. High-quality, femtosecond x-ray diffraction measurements at the Linac Coherent Light Source were used to extract the liquid diffuse scattering signal. From the radial distribution function, we find that the structural evolution of the liquid with increasing pressure mimics the evolution of the solid phase. With increasing pressure, we find that the liquid structure evolves from a complex structure, with a low coordination number, to a simple liquid structure with a coordination number of 12. We provide a pathway for future experiments to study liquids at elevated pressures using high-energy lasers to shock compress materials beyond the reach of static diamond anvil cell techniques
Recovery of Metastable Dense Bi Synthesized by Shock Compression
X-ray free electron laser (XFEL) sources have revolutionized our capability to study ultrafast material behavior. Using an XFEL, we revisit the structural dynamics of shock compressed bismuth, resolving the transition sequence on shock release in unprecedented details. Unlike previous studies that found the phase-transition sequence on shock release to largely adhere to the equilibrium phase diagram (i.e., Bi-V → Bi-III → Bi-II → Bi-I), our results clearly reveal previously unseen, non-equilibrium behavior at these conditions. On pressure release from the Bi-V phase at 5 GPa, the Bi-III phase is not formed but rather a new metastable form of Bi. This new phase transforms into the Bi-II phase which in turn transforms into a phase of Bi which is not observed on compression. We determine this phase to be isostructural with β-Sn and recover it to ambient pressure where it exists for 20 ns before transforming back to the Bi-I phase. The structural relationship between the tetragonal β-Sn phase and the Bi-II phase (from which it forms) is discussed. Our results show the effect that rapid compression rates can have on the phase selection in a transforming material and show great promise for recovering high-pressure polymorphs with novel material properties in the future
Nonisentropic Release of a Shocked Solid
We present molecular dynamics (MD) simulations of shock and release in micron-scale tantalum crystals that exhibit post-breakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction, and are found to be close to those behind the shock
In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics
Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum-an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. The techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity