11 research outputs found

    Efficacy of a training intervention on the quality of practitioners' decision support for patients deciding about place of care at the end of life: A randomized control trial: Study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most people prefer home palliation but die in an institution. Some experience decisional conflict when weighing options regarding place of care. Clinicians can identify patients' decisional needs and provide decision support, yet generally lack skills and confidence in doing so. This study aims to determine whether the quality of clinicians' decision support can be improved with a brief, theory-based, skills-building intervention.</p> <p>Theory</p> <p>The Ottawa Decision Support Framework (ODSF) guides an evidence based, practical approach to assist clinicians in providing high-quality decision support. The ODSF proposes that decisional needs [personal uncertainty, knowledge, values clarity, support, personal characteristics] strongly influence the quality of decisions patients make. Clinicians can improve decision quality by providing decision support to address decisional needs [clarify decisional needs, provide facts and probabilities, clarify values, support/guide deliberation, monitor/facilitate progress].</p> <p>Methods/Design</p> <p>The efficacy of a brief education intervention will be assessed in a two-phase study. In phase one a focused needs assessment will be conducted with key informants. Phase two is a randomized control trial where clinicians will be randomly allocated to an intervention or control group. The intervention, informed by the needs assessment, knowledge transfer best practices and the ODSF, comprises an online tutorial; an interactive skills building workshop; a decision support protocol; performance feedback, and educational outreach. Participants will be assessed: a) at baseline (quality of decision support); b) after the tutorial (knowledge); and c) four weeks after the other interventions (quality of decision support, intention to incorporate decision support into practice and perceived usefulness of intervention components). Between group differences in the primary outcome (quality of decision support scores) will be analyzed using ANOVA.</p> <p>Discussion</p> <p>Few studies have investigated the efficacy of an evidence-based, theory guided intervention aimed at assisting clinicians to strengthen their patient decision support skills. Expanding our understanding of how clinicians can best support palliative patients' decision-making will help to inform best practices in patient-centered palliative care. There is potential transferability of lessons learned to other care situations such as chronic condition management, advance directives and anticipatory care planning. Should the efficacy evaluation reveal clear improvements in the quality of decision support provided by clinicians who received the intervention, a larger scale implementation and effectiveness trial will be considered.</p> <p>Trial registration</p> <p>This study is registered as NCT00614003</p

    Neurological manifestations of COVID-19 in adults and children

    Get PDF
    Different neurological manifestations of coronavirus disease 2019 (COVID-19) in adults and children and their impact have not been well characterized. We aimed to determine the prevalence of neurological manifestations and in-hospital complications among hospitalized COVID-19 patients and ascertain differences between adults and children. We conducted a prospective multicentre observational study using the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) cohort across 1507 sites worldwide from 30 January 2020 to 25 May 2021. Analyses of neurological manifestations and neurological complications considered unadjusted prevalence estimates for predefined patient subgroups, and adjusted estimates as a function of patient age and time of hospitalization using generalized linear models. Overall, 161 239 patients (158 267 adults; 2972 children) hospitalized with COVID-19 and assessed for neurological manifestations and complications were included. In adults and children, the most frequent neurological manifestations at admission were fatigue (adults: 37.4%; children: 20.4%), altered consciousness (20.9%; 6.8%), myalgia (16.9%; 7.6%), dysgeusia (7.4%; 1.9%), anosmia (6.0%; 2.2%) and seizure (1.1%; 5.2%). In adults, the most frequent in-hospital neurological complications were stroke (1.5%), seizure (1%) and CNS infection (0.2%). Each occurred more frequently in intensive care unit (ICU) than in non-ICU patients. In children, seizure was the only neurological complication to occur more frequently in ICU versus non-ICU (7.1% versus 2.3%, P &lt; 0.001). Stroke prevalence increased with increasing age, while CNS infection and seizure steadily decreased with age. There was a dramatic decrease in stroke over time during the pandemic. Hypertension, chronic neurological disease and the use of extracorporeal membrane oxygenation were associated with increased risk of stroke. Altered consciousness was associated with CNS infection, seizure and stroke. All in-hospital neurological complications were associated with increased odds of death. The likelihood of death rose with increasing age, especially after 25 years of age. In conclusion, adults and children have different neurological manifestations and in-hospital complications associated with COVID-19. Stroke risk increased with increasing age, while CNS infection and seizure risk decreased with age

    A comparative analysis of centralized waiting lists for patients without a primary care provider implemented in six Canadian provinces: study protocol

    Get PDF
    Background: Having a regular primary care provider (i.e., family physician or nurse practitioner) is widely considered to be a prerequisite for obtaining healthcare that is timely, accessible, continuous, comprehensive, and well-coordinated with other parts of the healthcare system. Yet, 4.6 million Canadians, approximately 15% of Canada’s population, are unattached; that is, they do not have a regular primary care provider. To address the critical need for attachment, especially for more vulnerable patients, six Canadian provinces have implemented centralized waiting lists for unattached patients. These waiting lists centralize unattached patients’ requests for a primary care provider in a given territory and match patients with providers. From the little information we have on each province’s centralized waiting list, we know the way they work varies significantly from province to province. The main objective of this study is to compare the different models of centralized waiting lists for unattached patients implemented in six provinces of Canada to each other and to available scientific knowledge to make recommendations on ways to improve their design in an effort to increase attachment of patients to a primary care provider. Methods: A logic analysis approach developed in three steps will be used. Step 1: build logic models that describe each province’s centralized waiting list through interviews with key stakeholders in each province; step 2: develop a conceptual framework, separate from the provincially informed logic models, that identifies key characteristics of centralized waiting lists for unattached patients and factors influencing their implementation through a literature review and interviews with experts; step 3: compare the logic models to the conceptual framework to make recommendations to improve centralized waiting lists in different provinces during a pan Canadian face-to-face exchange with decision-makers, clinicians and researchers. Discussion: This study is based on an inter-provincial learning exchange approach where we propose to compare centralized waiting lists and analyze variations in strategies used to increase attachment to a regular primary care provider. Fostering inter-provincial healthcare systems connectivity to improve centralized waiting lists’ practices across Canada can lever attachment to a regular provider for timely access to continuous, comprehensive and coordinated healthcare for all Canadians and particular for those who are vulnerable.Applied Science, Faculty ofMedicine, Faculty ofOther UBCNon UBCNursing, School ofPopulation and Public Health (SPPH), School ofReviewedFacult

    At-admission prediction of mortality and pulmonary embolism in an international cohort of hospitalised patients with COVID-19 using statistical and machine learning methods

    No full text
    By September 2022, more than 600 million cases of SARS-CoV-2 infection have been reported globally, resulting in over 6.5 million deaths. COVID-19 mortality risk estimators are often, however, developed with small unrepresentative samples and with methodological limitations. It is highly important to develop predictive tools for pulmonary embolism (PE) in COVID-19 patients as one of the most severe preventable complications of COVID-19. Early recognition can help provide life-saving targeted anti-coagulation therapy right at admission. Using a dataset of more than 800,000 COVID-19 patients from an international cohort, we propose a cost-sensitive gradient-boosted machine learning model that predicts occurrence of PE and death at admission. Logistic regression, Cox proportional hazards models, and Shapley values were used to identify key predictors for PE and death. Our prediction model had a test AUROC of 75.9% and 74.2%, and sensitivities of 67.5% and 72.7% for PE and all-cause mortality respectively on a highly diverse and held-out test set. The PE prediction model was also evaluated on patients in UK and Spain separately with test results of 74.5% AUROC, 63.5% sensitivity and 78.9% AUROC, 95.7% sensitivity. Age, sex, region of admission, comorbidities (chronic cardiac and pulmonary disease, dementia, diabetes, hypertension, cancer, obesity, smoking), and symptoms (any, confusion, chest pain, fatigue, headache, fever, muscle or joint pain, shortness of breath) were the most important clinical predictors at admission. Age, overall presence of symptoms, shortness of breath, and hypertension were found to be key predictors for PE using our extreme gradient boosted model. This analysis based on the, until now, largest global dataset for this set of problems can inform hospital prioritisation policy and guide long term clinical research and decision-making for COVID-19 patients globally. Our machine learning model developed from an international cohort can serve to better regulate hospital risk prioritisation of at-risk patients. © The Author(s) 2024
    corecore