138 research outputs found

    Attractive Tomonaga-Luttinger Liquid in a Quantum Spin Ladder

    Full text link
    We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines we determine the phase boundary and the order parameter of the low-temperature (3-dimensional) long-range-ordered phase. In the Tomonaga-Luttinger regime above the ordered phase, NMR relaxation reflects characteristic power-law decay of spin correlation functions as 1/T1 T^(1/2K-1), which allows us to determine the interaction parameter K as a function of field. We find that field-dependent K varies within the 1<K<2 range which signifies attractive interaction between the spinless fermions in the Tomonaga-Luttinger liquid

    Novel Crossover in Coupled Spin Ladders

    Get PDF
    We report a novel crossover behavior in the long-range-ordered phase of a prototypical spin-1/21/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4\mathrm{(C_7H_{10}N)_2CuBr_4}. The staggered order was previously evidenced from a continuous and symmetric splitting of 14^{14}N NMR spectral lines on lowering temperature below Tc330T_c\simeq 330 mK, with a saturation towards 150\simeq 150 mK. Unexpectedly, the split lines begin to further separate away below T100T^*\sim 100 mK while the line width and shape remain completely invariable. This crossover behavior is further corroborated by the NMR relaxation rate T11T_1^{-1} measurements. A very strong suppression reflecting the ordering, T11T5.5T_1^{-1}\sim T^{5.5}, observed above TT^*, is replaced by T11TT_1^{-1}\sim T below TT^*. These original NMR features are indicative of unconventional nature of the crossover, which may arise from a unique arrangement of the ladders into a spatially anisotropic and frustrated coupling network.Comment: 5 pages, 3 figure

    Absence of spin gap in the superconducting ladder compound Sr_2Ca_{12}Cu_{24}O_{41}

    Full text link
    Transport and 63^Cu-NMR, Knight shift and T_1, measurements performed on the two-leg spin ladders of Sr_2Ca_{12}Cu_{24}O_{41} single crystals show a collapse of the gap in ladder spin excitations when superconductivity is stabilised under a pressure of 29 kbar. These results support the prediction made with exact diagonalisation techniques in two-leg isotropic t-J ladders of a transition between a low-doping spin gap phase and a gapless 1-D Tomonaga-Luttinger regime.Comment: 6 pages, latex, 4 postscript figures included, submitted to Scienc

    Density of States and NMR Relaxation Rate in Anisotropic Superconductivity with Intersecting Line Nodes

    Full text link
    We show that the density of states in an anisotropic superconductor with intersecting line nodes in the gap function is proportional to Elog(αΔ0/E)E log (\alpha \Delta_0 /E) for E<<Δ0|E| << \Delta_0, where Δ0\Delta_0 is the maximum value of the gap function and α\alpha is constant, while it is proportional to EE if the line nodes do not intersect. As a result, a logarithmic correction appears in the temperature dependence of the NMR relaxation rate and the specific heat, which can be observed experimentally. By comparing with those for the heavy fermion superconductors, we can obtain information about the symmetry of the gap function.Comment: 7 pages, 4 PostScript Figures, LaTeX, to appear in J. Phys. Soc. Jp

    Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy

    Full text link
    The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density. We also show that this modulation impacts on most electronic properties, that it appears jointly with intra-unit-cell nematic, but not magnetic, order, and that it exhibits differences with the charge density wave observed at lower temperatures in high magnetic fields. These observations prove mostly universal, they place new constraints on the origin of the charge density wave and they reveal that the charge modulation is pinned by native defects. Similarities with results in layered metals such as NbSe2, in which defects nucleate halos of incipient charge density wave at temperatures above the ordering transition, raise the possibility that order-parameter fluctuations, but no static order, would be observed in the normal state of most cuprates if disorder were absent.Comment: Updated version. Free download at Nature Comm. website (doi below

    Spin susceptibility of charge ordered YBa2Cu3Oy across the upper critical field

    Full text link
    The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper-oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements. Here, we use 17O NMR to measure the spin susceptibility χspin\chi_{spin} of the CuO2 planes at low temperature in charge ordered YBa2Cu3Oy. We find that χspin\chi_{spin} increases (most likely linearly) with magnetic field H and saturates above field values ranging from 20 to 40 T. This result is consistent with Hc2 values claimed by G. Grissonnanche et al. [Nat. Commun. 5, 3280 (2014)] and with the interpretation that the charge-density-wave (CDW) reduces Hc2 in underdoped YBa2Cu3Oy. Furthermore, the absence of marked deviation in χspin(H)\chi_{spin}(H) at the onset of long-range CDW order indicates that this Hc2 reduction and the Fermi-surface reconstruction are primarily rooted in the short-range CDW order already present in zero field, not in the field-induced long-range CDWorder. Above Hc2, the relatively low values of χspin\chi_{spin} at T=2 K show that the pseudogap is a ground-state property, independent of the superconducting gap.Comment: To appea

    A low-dimensional spin S = 1/2 system at the quantum critical limit: Na2V2O7

    Full text link
    We report the results of measurements of the dc-susceptibility and the 23Na-NMR response of Na2V2O7, a recently synthesized, non metallic low dimensional spin system. Our results indicate that upon reducing the temperature to below 100 K, the V^{4+} moments are gradually quenched, leaving only one moment out of 9 active. The NMR data reveal a phase transition at very low temperatures. With decreasing applied field H, the critical temperature shifts towards T = 0 K, suggesting that Na2V2O7 may be regarded as an insulator reaching a quantum critical point at H = 0.Comment: 4 pages, 5 figure

    Mott Transition, Compressibility Divergence and P-T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation

    Full text link
    The phase diagram of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2Cl has been investigated by ultrasonic velocity measurements under helium gas pressure. Different phase transitions were identified trough several elastic anomalies characterized from isobaric and isothermal sweeps. Our data reveal two crossover lines that end on the critical point terminating the first-order Mott transition line. When the critical point is approached along these lines, we observe a dramatic softening of the velocity which is consistent with a diverging compressibility of the electronic degrees of freedom.Comment: 4 pages, 5 figure

    Perturbation Theory on the Transition Temperature and Electronic Properties of Organic Superconductor

    Full text link
    We study the superconducting transition temperature and the electronic properties of the metallic phase of κ\kappa-type (BEDT-TTF)2_2X which shows unconventional properties in experiments, on the basis of the third order perturbation theory for a simple effective Hubbard model of a nearly triangular lattice. Appropriate transition temperatures and dx2y2d_{x^2-y^2} symmetry of the gap function are obtained in good agreement with experimental results. We also calculate the transition temperature by the fluctuation-exchange approximation(FLEX) in order to compare the two approaches; FLEX gives higher transition temperatures rather than the perturbation approach. However, it is also found that the vertex corrections, which are ignored in FLEX, have a crucial effect on TcT_{\rm c} for strongly frustrated systems. The density of states and the normal self-energy calculated in this perturbation scheme show the nature of the conventional Fermi liquid near the Mott-insulator. Thus, our perturbation approach is applicable to the conventional metallic phase of this compound, while it cannot explain the (pseudo-)spin gap phenomenon which signals the non-Fermi liquid
    corecore