5,512 research outputs found
Parisi States in a Heisenberg Spin-Glass Model in Three Dimensions
We have studied low-lying metastable states of the Heisenberg model
in two () and three () dimensions having developed a hybrid genetic
algorithm. We have found a strong evidence of the occurrence of the Parisi
states in but not in . That is, in lattices, there exist
metastable states with a finite excitation energy of for
, and energy barriers between the ground state and
those metastable states are with in
but with in . We have also found droplet-like
excitations, suggesting a mixed scenario of the replica-symmetry-breaking
picture and the droplet picture recently speculated in the Ising SG model.Comment: 4 pages, 6 figure
Attracting shallow donors: Hydrogen passivation in (Al,Ga,In)-doped ZnO
The hydrogen interstitial and the substitutional Al_Zn, Ga_Zn and In_Zn are
all shallow donors in ZnO and lead to n-type conductivity. Although shallow
donors are expected to repel each other, we show by first principles
calculations that in ZnO these shallow donor impurities attract and form a
complex, leading to a donor level deep in the band gap. This puts a limit on
the n-type conductivity of (Al,Ga,In)-doped ZnO in the presence of hydrogen.Comment: 4 pages, 5 figure
Primordial Non-Gaussianity and Analytical Formula for Minkowski Functionals of the Cosmic Microwave Background and Large-scale Structure
We derive analytical formulae for the Minkowski Functions of the cosmic
microwave background (CMB) and large-scale structure (LSS) from primordial
non-Gaussianity. These formulae enable us to estimate a non-linear coupling
parameter, f_NL, directly from the CMB and LSS data without relying on
numerical simulations of non-Gaussian primordial fluctuations. One can use
these formulae to estimate statistical errors on f_NL from Gaussian
realizations, which are much faster to generate than non-Gaussian ones, fully
taking into account the cosmic/sampling variance, beam smearing, survey mask,
etc. We show that the CMB data from the Wilkinson Microwave Anisotropy Probe
should be sensitive to |f_NL|\simeq 40 at the 68% confidence level. The Planck
data should be sensitive to |f_NL|\simeq 20. As for the LSS data, the late-time
non-Gaussianity arising from gravitational instability and galaxy biasing makes
it more challenging to detect primordial non-Gaussianity at low redshifts. The
late-time effects obscure the primordial signals at small spatial scales.
High-redshift galaxy surveys at z>2 covering \sim 10Gpc^3 volume would be
required for the LSS data to detect |f_NL|\simeq 100. Minkowski Functionals are
nicely complementary to the bispectrum because the Minkowski Functionals are
defined in real space and the bispectrum is defined in Fourier space. This
property makes the Minksowski Functionals a useful tool in the presence of
real-world issues such as anisotropic noise, foreground and survey masks. Our
formalism can be extended to scale-dependent f_NL easily.Comment: 16 pages, 5 figures, accepted for publication in ApJ (Vol. 653, 2006
Spin-Glass and Chiral-Glass Transitions in a Heisenberg Spin-Glass Model in Three Dimensions
The three-dimensional Heisenberg spin-glass model is investigated by
the non-equilibrium relaxation method from the paramagnetic state. Finite-size
effects in the non-equilibrium relaxation are analyzed, and the relaxation
functions of the spin-glass susceptibility and the chiral-glass susceptibility
in the infinite-size system are obtained. The finite-time scaling analysis
gives the spin-glass transition at and the
chiral-glass transition at . The results
suggest that both transitions occur simultaneously. The critical exponent of
the spin-glass susceptibility is estimated as ,
which makes an agreement with the experiments of the insulating and the
canonical spin-glass materials.Comment: 4 pages, 2 figure
No-cloning theorem in thermofield dynamics
We discuss the relation between the no-cloning theorem from quantum
information and the doubling procedure used in the formalism of thermofield
dynamics (TFD). We also discuss how to apply the no-cloning theorem in the
context of thermofield states defined in TFD. Consequences associated to mixed
states, von Neumann entropy and thermofield vacuum are also addressed.Comment: 16 pages, 3 figure
Ordering of the Heisenberg Spin Glass in High Dimensions
Ordering of the Heisenberg spin glass with the nearest-neighbor Gaussian
coupling is investigated by equilibrium Monte Carlo simulations in four and
five dimensions. Ordering of the mean-field Heisenberg spin-glass is also
studied for comparison. Particular attention is paid to the nature of the
spin-glass and the chiral-glass orderings. Our numerical data suggest that, in
five dimensions, the model exhibits a single spin-glass transition at a finite
temperature, where the spin-glass order accompanying the simultaneous
chiral-glass order sets in. In four dimensions, by contrast, the model exhibits
a chiral-glass transition at a finite temperature, not accompanying the
standard spin-glass order. The critical region associated with the chiral-glass
transition, however, is very narrow, suggesting that dimension four is close to
the marginal dimensionality.Comment: 18 pages, 12 figure
Determinação e comparação dos limiares de hidratação em alface (Lactuca sativa) em diferentes sistemas de cultivo.
Dynamical Critical Phenomena in three-dimensional Heisenberg Spin Glasses
Spin-glass (SG) and chiral-glass (CG) orderings in three dimensional (3D)
Heisenberg spin glass with and without magnetic anisotropy are studied by using
large-scale off-equilibrium Monte Carlo simulations. A characteristic time of
relaxation, which diverges at a transition temperature in the thermodynamic
limit, is obtained as a function of the temperature and the system size. Based
on the finite-size scaling analysis for the relaxation time, it is found that
in the isotropic Heisenberg spin glass, the CG phase transition occurs at a
finite temperature, while the SG transition occurs at a lower temperature,
which is compatible with zero. Our results of the anisotropic case support the
chirality scenario for the phase transitions in the 3D Heisenberg spin glasses.Comment: 9 pages, 19 figure
Thermal Quantum Fields in Static Electromagnetic Backgrounds
We present and discuss, at a general level, new mathematical results on the
spatial nonuniformity of thermal quantum fields coupled minimally to static
background electromagnetic potentials. Two distinct examples are worked through
in some detail: uniform (parallel and perpendicular) background electric and
magnetic fields coupled to a thermal quantum scalar field.Comment: 22 page
- …
