Abstract

Spin-glass (SG) and chiral-glass (CG) orderings in three dimensional (3D) Heisenberg spin glass with and without magnetic anisotropy are studied by using large-scale off-equilibrium Monte Carlo simulations. A characteristic time of relaxation, which diverges at a transition temperature in the thermodynamic limit, is obtained as a function of the temperature and the system size. Based on the finite-size scaling analysis for the relaxation time, it is found that in the isotropic Heisenberg spin glass, the CG phase transition occurs at a finite temperature, while the SG transition occurs at a lower temperature, which is compatible with zero. Our results of the anisotropic case support the chirality scenario for the phase transitions in the 3D Heisenberg spin glasses.Comment: 9 pages, 19 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020