Spin-glass (SG) and chiral-glass (CG) orderings in three dimensional (3D)
Heisenberg spin glass with and without magnetic anisotropy are studied by using
large-scale off-equilibrium Monte Carlo simulations. A characteristic time of
relaxation, which diverges at a transition temperature in the thermodynamic
limit, is obtained as a function of the temperature and the system size. Based
on the finite-size scaling analysis for the relaxation time, it is found that
in the isotropic Heisenberg spin glass, the CG phase transition occurs at a
finite temperature, while the SG transition occurs at a lower temperature,
which is compatible with zero. Our results of the anisotropic case support the
chirality scenario for the phase transitions in the 3D Heisenberg spin glasses.Comment: 9 pages, 19 figure