98 research outputs found

    Differential Influence of Clonal Integration on Morphological and Growth Responses to Light in Two Invasive Herbs

    Get PDF
    Background and aims: In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions. Methods: In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85 % shade and their morphological and growth responses were assessed. Key results: The influence of clonal integration on the light reaction norm (connection6light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection6light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mothe

    Decomposition and benthic macroinvertebrate communities of exotic Japanese knotweed (Fallopia japonica) and American sycamore (Platanus occidentalus) detritus within the Susquehanna River

    No full text
    The invasive shrub Japanese knotweed (Fallopia japonica) is spreading through riparian forests in Central Pennsylvania. There is concern that detritus from this species may impact adjacent aquatic ecosystems, as allocthonous material forms the basis for aquatic food webs and may impact benthic community structure. This study compares key ecosystem processes within Japanese knotweed leaf litter to leaf litter of a native riparian species, American sycamore (Platanus occidentalis). We assess benthic macroinvertebrate communities and decomposition rates within experimental Japanese knotweed and American sycamore leaf packs at three sites within the Susquehanna River. Japanese knotweed detritus hosted a similar macroinvertebrate community to American sycamore and their assemblages had similar representation of functional feeding groups. The similarity between the invertebrate communities occupying American sycamore and Japanese knotweed detritus indicates that macroinvertebrates are able to utilize non-native litter for habitat and potentially as an energy source. American sycamore decomposed at a faster rate than Japanese knotweed, lending support to the Novel Weapons Hypothesis, which suggests that non-native species like Japanese knotweed may inhibit microbial colonization and subsequent litter breakdown. Our results suggest that invasion of Japanese knotweed along riparian corridors of large river systems may not have severe ecological consequences on local ecosystem processes

    Lack of Impacts during Early Establishment Highlights a Short-Term Management Window for Minimizing Invasions from Perennial Biomass Crops

    No full text
    Managing intentional species introductions requires evaluating potential ecological risks. However, it is difficult to weigh costs and benefits when data about interactions between novel species and the communities they are introduced to are scarce. In anticipation of expanded cultivation of perennial biomass crops, we experimentally introduced Miscanthus sinensis and Miscanthus × giganteus (two non-native candidate biomass crops) into two different non-crop habitats (old field and flood-plain forest) to evaluate their establishment success and impact on ambient local communities. We followed these controlled introductions and the composition dynamics of the receiving communities over a 5-year period. Habitats differed widely in adult Miscanthus survival and reproduction potential between species, although seed persistence and seedling emergence were similar in the two biomass crops in both habitats. Few introductions survived in the floodplain forest habitat, and this mortality precluded analyses of their potential impacts there. In old field habitats, proportional survival ranged from 0.3 to 0.4, and plant survival and growth increased with age. However, there was no evidence of biomass crop species effects on community richness or evenness or strong impacts on the resident old field constituents across 5 years. These results suggest that Miscanthus species could establish outside of cultivated fields, but there will likely be a lag in any impacts on the receiving communities. Local North American invasions by M. sinensis and M. sacchariflorus display the potential for Miscanthus species to develop aggressively expanding populations. However, the weak short-term community-level impacts demonstrated in the current study indicate a clear management window in which eradicating species footholds is easily achieved, if they can be detected early enough. Diligent long-term monitoring, detection, and eradication plans are needed to successfully minimize harmful invasions from these biomass crops

    The Association of Increasing Body Mass Index and Kidney Stone Disease

    Full text link
    aerial view, looking northeast toward downtown Boston, 10/9/201
    • …
    corecore