195 research outputs found

    Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme

    Get PDF
    A Newmark-diffusive scheme is presented for the time-domain solution of dynamic systems containing fractional derivatives. This scheme combines a classical Newmark time-integration method used to solve second-order mechanical systems (obtained for example after finite element discretization), with a diffusive representation based on the transformation of the fractional operator into a diagonal system of linear differential equations, which can be seen as internal memory variables. The focus is given on the algorithm implementation into a finite element framework, the strategies for choosing diffusive parameters, and applications to beam structures with a fractional Zener model

    Thin presentation of knots and lens spaces

    Full text link
    This paper concerns thin presentations of knots K in closed 3-manifolds M^3 which produce S^3 by Dehn surgery, for some slope gamma. If M does not have a lens space as a connected summand, we first prove that all such thin presentations, with respect to any spine of M have only local maxima. If M is a lens space and K has an essential thin presentation with respect to a given standard spine (of lens space M) with only local maxima, then we show that K is a 0-bridge or 1-bridge braid in M; furthermore, we prove the minimal intersection between K and such spines to be at least three, and finally, if the core of the surgery K_gamma yields S^3 by r-Dehn surgery, then we prove the following inequality: |r| <= 2g, where g is the genus of K_gamma.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol3/agt-3-23.abs.htm

    Numerical bifurcation of predator-prey fractional differential equations with a constant rate harvesting

    Get PDF
    In this article saddle and Hopf bifurcation points of predator-prey fractional differential equations system with a constant rate harvesting are investigated. The numerical results based on Grunwald-Letnikov discretization for fractional differential equations together with the Mickens' non-standard discretization method agree with those found by the corresponding ordinary differential equation system

    Universality in Systems with Power-Law Memory and Fractional Dynamics

    Full text link
    There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as "universality", can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201

    A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control

    Get PDF
    Many boundary controlled and observed Partial Differential Equations can be represented as port-Hamiltonian systems with dissipation, involving a Stokes-Dirac geometrical structure together with constitutive relations. The Partitioned Finite Element Method, introduced in Cardoso-Ribeiro et al. (2018), is a structure preserving numerical method which defines an underlying Dirac structure, and constitutive relations in weak form, leading to finite-dimensional port-Hamiltonian Differential Algebraic systems (pHDAE). Different types of dissipation are examined: internal damping, boundary damping and also diffusion models

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    Get PDF
    [This corrects the article DOI: 10.1186/s13601-016-0116-9.]
    corecore