865 research outputs found
Decay of a superfluid current of ultra-cold atoms in a toroidal trap
Using a numerical implementation of the truncated Wigner approximation, we
simulate the experiment reported by Ramanathan et al. in Phys. Rev. Lett. 106,
130401 (2011), in which a Bose-Einstein condensate is created in a toroidal
trap and set into rotation via a phase imprinting technique. A potential
barrier is then placed in the trap to study the decay of the superflow. We find
that the current decays via thermally activated phase slips, which can also be
visualized as vortices crossing the barrier region in the radial direction.
Adopting the notion of critical velocity used in the experiment, we determine
it to be lower than the local speed of sound at the barrier, in contradiction
to the predictions of the zero-temperature Gross-Pitaevskii equation. We map
out the superfluid decay rate and critical velocity as a function of
temperature and observe a strong dependence. Thermal fluctuations offer a
partial explanation of the experimentally observed reduction of the critical
velocity from the phonon velocity.Comment: 15 pages. 11 figure
Light cone dynamics and reverse Kibble-Zurek mechanism in two-dimensional superfluids following a quantum quench
We study the dynamics of the relative phase of a bilayer of two-dimensional
superfluids after the two superfluids have been decoupled. We find that on
short time scales the relative phase shows "light cone" like dynamics and
creates a metastable superfluid state, which can be supercritical. We also
demonstrate similar light cone dynamics for the transverse field Ising model.
On longer time scales the supercritical state relaxes to a disordered state due
to dynamical vortex unbinding. This scenario of dynamically suppressed vortex
proliferation constitutes a reverse-Kibble-Zurek effect. We study this effect
both numerically using truncated Wigner approximation and analytically within a
newly suggested time dependent renormalization group approach (RG). In
particular, within RG we show that there are two possible fixed points for the
real time evolution corresponding to the superfluid and normal steady states.
So depending on the initial conditions and the microscopic parameters of the
Hamiltonian the system undergoes a non-equilibrium phase transition of the
Kosterlitz-Thouless type. The time scales for the vortex unbinding near the
critical point are exponentially divergent, similar to the equilibrium case.Comment: 14 pages, 10 figure
Decoherence in an exactly solvable qubit model with initial qubit-environment correlations
We study a model of dephasing (decoherence) in a two-state quantum system
(qubit) coupled to a bath of harmonic oscillators. An exact analytic solution
for the reduced dynamics of a two-state system in this model has been obtained
previously for factorizing initial states of the combined system. We show that
the model admits exact solutions for a large class of correlated initial states
which are typical in the theory of quantum measurements. We derive exact
expressions for the off-diagonal elements of the qubit density matrix, which
hold for an arbitrary strength of coupling between the qubit and the bath. The
influence of initial correlations on decoherence is considered for different
bath spectral densities. Time behavior of the qubit entropy in the decoherence
process is discussed.Comment: 10 pages, 5 figure
Bose-Fermi mixtures in 1D optical superlattices
The zero temperature phase diagram of binary boson-fermion mixtures in
two-colour superlattices is investigated. The eigenvalue problem associated
with the Bose-Fermi-Hubbard Hamiltonian is solved using an exact numerical
diagonalization technique, supplemented by an adaptive basis truncation scheme.
The physically motivated basis truncation allows to access larger systems in a
fully controlled and very flexible framework. Several experimentally relevant
observables, such as the matter-wave interference pattern and the
condensatefraction, are investigated in order to explore the rich phase
diagram. At symmetric half filling a phase similar to the Mott-insulating phase
in a commensurate purely bosonic system is identified and an analogy to recent
experiments is pointed out. Furthermore a phase of complete localization of the
bosonic species generated by the repulsive boson-fermion interaction is
identified. These localized condensates are of a different nature than the
genuine Bose-Einstein condensates in optical lattices.Comment: 18 pages, 9 figure
Comparison of Computational Results with a Low-g, Nitrogen Slosh and Boiling Experiment
This paper compares a fluid/thermal simulation, in Fluent, with a low-g, nitrogen slosh and boiling experiment. In 2010, the French Space Agency, CNES, performed cryogenic nitrogen experiments in a low-g aircraft campaign. From one parabolic flight, a low-g interval was simulated that focuses on low-g motion of nitrogen liquid and vapor with significant condensation, evaporation, and boiling. The computational results are compared with high-speed video, pressure data, heat transfer, and temperature data from sensors on the axis of the cylindrically shaped tank. These experimental and computational results compare favorably. The initial temperature stratification is in good agreement, and the two-phase fluid motion is qualitatively captured. Temperature data is matched except that the temperature sensors are unable to capture fast temperature transients when the sensors move from wet to dry (liquid to vapor) operation. Pressure evolution is approximately captured, but condensation and evaporation rate modeling and prediction need further theoretical analysis
Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat
Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. Results: Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. Conclusions: We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children
Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009
This article is based on the ECTRIMS lecture given at the 25th ECTRIMS meeting which was held in Düsseldorf, Germany, from 9 to 12 September 2009. Five challenges have been identified: (1) safeguarding the principles of medical ethics; (2) optimizing the risk/benefit ratio; (3) bridging the gap between multiple sclerosis and experimental autoimmune encephalitis; (4) promoting neuroprotection and repair; and (5) tailoring multiple sclerosis therapy to the individual patient. Each of these challenges will be discussed and placed in the context of current research into the pathogenesis and treatment of multiple sclerosis
Recanalization of total coronary occlusions using a laser guidewire (The European TOTAL Surveillance Study)
- …
