14,449 research outputs found

    Quantum Limitations on the Storage and Transmission of Information

    Full text link
    Information must take up space, must weigh, and its flux must be limited. Quantum limits on communication and information storage leading to these conclusions are here described. Quantum channel capacity theory is reviewed for both steady state and burst communication. An analytic approximation is given for the maximum signal information possible with occupation number signal states as a function of mean signal energy. A theorem guaranteeing that these states are optimal for communication is proved. A heuristic "proof" of the linear bound on communication is given, followed by rigorous proofs for signals with specified mean energy, and for signals with given energy budget. And systems of many parallel quantum channels are shown to obey the linear bound for a natural channel architecture. The time--energy uncertainty principle is reformulated in information language by means of the linear bound. The quantum bound on information storage capacity of quantum mechanical and quantum field devices is reviewed. A simplified version of the analytic proof for the bound is given for the latter case. Solitons as information caches are discussed, as is information storage in one dimensional systems. The influence of signal self--gravitation on communication is considerd. Finally, it is shown that acceleration of a receiver acts to block information transfer.Comment: Published relatively inaccessible review on a perennially interesting subject. Plain TeX, 47 pages, 5 jpg figures (not embedded

    The shape and mechanics of curved fold origami structures

    Full text link
    We develop recursion equations to describe the three-dimensional shape of a sheet upon which a series of concentric curved folds have been inscribed. In the case of no stretching outside the fold, the three-dimensional shape of a single fold prescribes the shape of the entire origami structure. To better explore these structures, we derive continuum equations, valid in the limit of vanishing spacing between folds, to describe the smooth surface intersecting all the mountain folds. We find that this surface has negative Gaussian curvature with magnitude equal to the square of the fold's torsion. A series of open folds with constant fold angle generate a helicoid

    A random walk model to study the cycles emerging from the exploration-exploitation trade-off

    Get PDF
    We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to non intuitive interesting results, such as the emergence of cycles.Comment: To appear in Phys. Rev.

    Physical-based optimization for non-physical image dehazing methods

    Get PDF
    Images captured under hazy conditions (e.g. fog, air pollution) usually present faded colors and loss of contrast. To improve their visibility, a process called image dehazing can be applied. Some of the most successful image dehazing algorithms are based on image processing methods but do not follow any physical image formation model, which limits their performance. In this paper, we propose a post-processing technique to alleviate this handicap by enforcing the original method to be consistent with a popular physical model for image formation under haze. Our results improve upon those of the original methods qualitatively and according to several metrics, and they have also been validated via psychophysical experiments. These results are particularly striking in terms of avoiding over-saturation and reducing color artifacts, which are the most common shortcomings faced by image dehazing methods

    On Collision Course: The Nature of the Binary Star Cluster NGC 2006 / SL 538

    Full text link
    The LMC hosts a rich variety of star clusters seen in close projected proximity. Ages have been derived for few of them showing differences up to few million years, hinting at being binary star clusters. However, final confirmation needs to be done through spectroscopic analysis. Here we focus on the LMC cluster pair NGC2006-SL538 and aim to determine whether the star cluster pair is a bound entity (binary star cluster) or a chance alignment. Using the MIKE echelle spectrograph at LCO we have acquired integrated-light spectra for each cluster. We have measured radial velocities by two methods: a) direct line profile measurement yields vr=300.3±5±6_r=300.3\pm5\pm6 km/s for NGC2006 and vr=310.2±4±6v_r=310.2\pm4\pm6 km/s for SL538. b) By comparing observed spectra with synthetic bootstrapped spectra yielding vr=311.0±0.6v_r=311.0\pm0.6 km/s for NGC2006 and vr=309.4±0.5v_r=309.4\pm0.5 km/s for SL538. Finally when spectra are directly compared, we find a Δv=1.08±0.47{\Delta}v=1.08\pm0.47 km/s. Full-spectrum SED fits reveal that the stellar population ages lie in the range 13-21 Myr with a metallicity of Z=0.008. We find indications for differences in the chemical abundance patterns as revealed by the helium absorption lines between the two clusters. The dynamical analysis shows that the two clusters are likely to merge within the next \sim150 Myr. The NGC2006-SL538 cluster pair shows radial velocities, stellar population and dynamical parameters consistent with a gravitational bound entity. We conclude that this is a genuine binary cluster pair, and we propose that their differences in ages and stellar population chemistry is most likely due to variances in their chemical enrichment history within their environment. We suggest that their formation may have taken place in a loosely bound star-formation complex which saw initial fragmentation but then had its clusters become a gravitationally bound pair by tidal capture.Comment: Accepted for publication in Astronomy & Astrophysics. 15 pages, 10 figures in low resolutio

    Mass radius relation of compact stars in the braneworld

    Full text link
    The braneworld scenario, based on the fact that the four dimension space-time is a hyper-surface of a five dimensional manifold, was shown to deal in a satisfactory way with the hierarchy problem. In this work we study macroscopic stellar properties of compact stars from the braneworld point of view. Using neutron star equations of state, we test the possibility of extra dimensions by solving the brane Tolman-Oppenheimer-Volkoff equations obtained for three kinds of possible compact objects: hadronic, hybrid and quark stars. By comparing the macroscopic solutions with observational constraints, we establish a brane tension lower limit and the value for which the Tolman-Oppenheimer-Volkoff equations in the braneworld converge to the usual Tolman-Oppenheimer-Volkoff equations.Comment: 15 pages, 5 figures, 4 tables, to appear in JCA
    corecore