614 research outputs found
Role of heat and mechanical treatments in the fabrication of superconducting Ba0.6K0.4Fe2As2 ex-situ Powder-In-Tube tapes
Among the recently discovered Fe-based superconducting compounds, the
(K,Ba)Fe2As2 phase is attracting large interest within the scientific community
interested in conductor developments. In fact, after some years of development,
critical current densities Jc of about 105 A/cm2 at fields up to more than 10 T
have been obtained in powder in tube (PIT) processed wires and tapes. Here we
explore the crucial points in the wire/tape fabrication by means of the ex-situ
PIT method. We focus on scaling up processes which are crucial for the
industrial fabrication. We analyzed the effects on the microstructure of the
different heat and mechanical treatments. By an extensive microstructural
analysis correlated with the transport properties we addressed the issues
concerning the phase purity, the internal porosity and crack formation in the
superconducting core region. Our best conductors with a filling factor of about
30 heat treated at 800 C exhibited Tc = 38 K the highest value measured in such
kind of superconducting tape. The microstructure analysis shows clean and well
connected grain boundaries but rather poor density: The measured Jc of about 3
x 10^4 A/cm2 in self-field is suppressed by less than a factor 7 at 7 T. Such
not yet optimized Jc values can be accounted for by the reduced density while
the moderate in-field suppression and a rather high n-factor confirm the high
homogeneity and uniformity of these tapes
The immuneregulator role of neprilysin (NEP) in invertebrates
Neprilysin (NEP) represents an important enzyme in both vertebrates and invertebrates. In the present report we have focused our attention to invertebrates. In particular, a structure related to CD10/NEP as well as its activity in different tissues, such as immunocytes, nervous tissue and muscle of various species were detected. Moreover, the role played by the enzyme in the interactions between host and parasite has also been reported. The findings indicate that NEP immunoregulation is a well-balanced process that, with appropriate physiological and homeostatic responses to challenges, allows the survival and well-being of the species
A putative helical cytokine functioning in innate immune signalling in Drosophila melanogaster
In invertebrates and vertebrates, innate immunity is considered the first line of defense mechanism against non-self material. In vertebrates,cytokines play a critical role in innate immune signalling. To date, however, the existence of genes encoding for invertebrate helical cytokines hasbeen anticipated, but never demonstrated. Here, we report the first structural and functional evidence of a gene encoding for a putative helicalcytokine in Drosophila melanogaster. Functional experiments demonstrate that its expression, as well as that of the antimicrobial factors defensinand cecropin A1, is significantly increased after immune stimulation. These observations suggest the involvement of helical cytokines in the innateimmune response of invertebrates
Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB2 ex-situ tapes
Ex-situ Powder-In-Tube MgB2 tapes prepared with ball-milled, undoped powders
showed a strong enhancement of the irreversibility field H*, the upper critical
field Hc2 and the critical current density Jc(H) together with the suppression
of the anisotropy of all of these quantities. Jc reached 104 A/cm2 at 4.2 K and
10 T, with an irreversibility field of about 14 T at 4.2 K, and Hc2 of 9 T at
25 K, high values for not-doped MgB2. The enhanced Jc and H* values are
associated with significant grain refinement produced by milling of the MgB2
powder, which enhances grain boundary pinning, although at the same time also
reducing the connectivity from about 12% to 8%. Although enhanced pinning and
diminished connectivity are in opposition, the overall influence of ball
milling on Jc is positive because the increased density of grains with a size
comparable with the mean free path produces strong electron scattering that
substantially increases Hc2, especially Hc2 perpendicular to the Mg and B
planes.Comment: 26 pages, 9 figures, submitted to J. Appl. Phy
A Two-Fluid Thermally-Stable Cooling Flow Model
A new model for cooling flows in X-ray clusters, capable of naturally
explaining salient features observed, is proposed. The only requirement is that
a significant relativistic component, in the form of cosmic rays (CR), be
present in the intra-cluster medium and significantly frozen to the thermal
gas. Such an addition qualitatively alters the conventional isobaric thermal
instability criterion such that a fluid parcel becomes thermally stable when
its thermal pressure drops below a threshold fraction of its CR pressure.
Consequently, the lowest possible temperature at any radius is about one third
of the ambient temperature {\it at that radius}, exactly as observed, In
addition, we suggest that dissipation of internal gravity waves, excited by
radial oscillatory motions of inward drifting cooling clouds about their radial
equilibrium positions, may be responsible for heating up cooling gas. With the
ultimate energy source for powering the cooling X-ray luminosity and heating up
cooling gas being gravitational due to inward drifting cooling clouds as well
as the general inward flow, heating is spatially distributed and energetically
matched with cooling. One desirable property of this heating mechanism is that
heating energy is strongly centrally concentrated, providing the required
heating for emission-line nebulae.Comment: 13 pages, submitted to ApJ
Amyloid/Melanin distinctive mark in invertebrate immunity
Protostomes and Deuterostomes show the same nexus between melanin production, and amyloid
fibril production, i.e., the presence of melanin is indissolubly linked to amyloid scaffold that, in turn, is
conditioned by the redox status/cytoplasmic pH modification, pro-protein cleavage presence,
adrenocorticotropin hormone (ACTH), melanocyte-stimulating hormone (\u3b1-MSH), and neutral
endopeptidase (NEP) overexpressions. These events represent the crucial component of immune
response in invertebrates, while in vertebrates these series of occurrences could be interpreted as a
modest and very restricted innate immune response. On the whole, it emerges that the mechanisms
involving amyloid fibrils/pigment synthesis in phylogenetically distant metazoan (viz, cnidaria,
molluscs, annelids, insects, ascidians and vertebrates) are evolutionary conserved. Furthermore, our
data show the relationship between immune and neuroendocrine systems in amyloid/melanin
synthesis. Indeed the process is closely associated to ACTH-\u3b1-MSH production, and their role in
stress responses leading to pigment production reflects and confirms again their ancient phylogeny
Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires
It is well known that longer Bi-2212 conductors have significantly lower
critical current density (Jc) than shorter ones, and recently it has become
clear that a major cause of this reduction is internal gas pressure generated
during heat treatment, which expands the wire diameter and dedensifies the
Bi-2212 filaments. Here we report on the length-dependent expansion of 5 to 240
cm lengths of state-of-the-art, commercial Ag alloy-sheathed Bi-2212 wire after
full and some partial heat treatments. Detailed image analysis along the wire
length shows that the wire diameter increases with distance from the ends,
longer samples often showing evident damage and leaks provoked by the internal
gas pressure. Comparison of heat treatments carried out just below the melting
point and with the usual melt process makes it clear that melting is crucial to
developing high internal pressure. The decay of Jc away from the ends is
directly correlated to the local wire diameter increase, which decreases the
local Bi-2212 filament mass density and lowers Jc, often by well over 50%. It
is clear that control of the internal gas pressure is crucial to attaining the
full Jc of these very promising round wires and that the very variable
properties of Bi-2212 wires are due to the fact that this internal gas pressure
has so far not been well controlled
Drosophila Helical factor is an inducible protein acting as an immune-regulated cytokine in S2 cells.
The innate immunity of Drosophila melanogaster is based on cellular and humoral components. Drosophila Helical factor (Hf), is a molecule previously discovered using an in silico approach and whose expression is controlled by the immune deficiency (Imd) pathway. Here we present evidence demonstrating that Hf is an inducible protein constitutively produced by the S2 hemocyte-derived cell line. Hf expression is stimulated by bacterial extracts that specifically trigger the Imd pathway. In absence of any bacterial challenge, the recombinant form of Hf can influence the expression of the antimicrobial peptides (AMPs) defensin but not drosomycin. These data suggest that in vitro Hf is an inducible and immune-regulated factor, with functions comparable to those of secreted vertebrate cytokine
Functional amyloid formation in LPS activated cells from invertebrates to vertebrates
LPS stimulation provokes serious cellular stress with an increase of cytoplasmic reactive oxygen species (ROS). We have investigated, among the different cellular defenses, amyloidogenesis as common physiological response to attenuate oxidative stress. Optical and electron microscopic observations of the following LPS activated cell lines [insect (larval hemocytes, IPLB-LdFB and Drosophila Schneider\u2019s S2 cells); mouse (NIH3T3 embryonic fibroblasts); Human (Human Umbilical Vein Endothelial Cells (HUVEC), neutrophils, and mesenchymal stem cells] reveal that, all are characterized by irregular profiles, cytoplasmic empty vacuoles or by cisternae containing fibrillar material. The compartmentalized fibrillar material shows staining properties typical of amyloid fibrils. LPS activation leads to ROS generation, resulting in pH acidification. Stimulated cells show pink cytoplasm in May-Gr\ufcnwald Giemsa differential staining, giving a gross indication of a lower intracellular pH. Moreover the activation of amyloidogenesis is also linked with an extensive production of ACTH and \u3b1-MSH in all cultured cell types. We suggest that amyloidogenesis is a common, physiological cellular response to weak ROS, starting when other anti-stress cellular systems failed to restore homeostasis. The morphological evidence and/or functional characterization of synthesized amyloid fibrils could be an early indicator of oxidative stress that may lead to a general inflammatory process
- …
