57 research outputs found

    The role of renin-angiotensin-aldosterone system polymorphisms in phenotypic expression of MYBPC3-related hypertrophic cardiomyopathy

    Get PDF
    The phenotypic variability of hypertrophic cardiomyopathy (HCM) in patients with identical pathogenic mutations suggests additional modifiers. In view of the regulatory role in cardiac function, blood pressure, and electrolyte homeostasis, polymorphisms in the renin-angiotensin-aldosterone system (RAAS) are candidates for modifying phenotypic expression. In order to investigate whether RAAS polymorphisms modulate HCM phenotype, we selected a large cohort of carriers of one of the three functionally equivalent truncating mutations in the MYBPC3 gene. Family-based association analysis was performed to analyze the effects of five candidate RAAS polymorphisms (ACE, rs4646994; AGTR1, rs5186; CMA, rs1800875; AGT, rs699; CYP11B2, rs1799998) in 368 subjects carrying one of the three mutations in the MYBPC3 gene. Interventricular septum (IVS) thickness and Wigle score were assessed by 2D-echocardiography. SNPs in the RAAS system were analyzed separately and combined as a pro-left ventricular hypertrophy (LVH) score for effects on the HCM phenotype. Analyzing the five polymorphisms separately for effects on IVS thickness and Wigle score detected two modest associations. Carriers of the CC genotype in the AGT gene had less pronounced IVS thickness compared with CT and TT genotype carriers. The DD polymorphism in the ACE gene was associated with a high Wigle score (P=0.01). No association was detected between the pro-LVH score and IVS thickness or Wigle score. In conclusion, in contrast to previous studies, in our large study population of HCM patients with functionally equivalent mutations in the MYBPC3 gene we did not find major effects of genetic variation within the genes of the RAAS system on phenotypic expression of HCM

    First genetic analysis of aneurysm genes in familial and sporadic abdominal aortic aneurysm

    Get PDF
    Genetic causes for abdominal aortic aneurysm (AAA) have not been identified and the role of genes associated with familial thoracic aneurysms in AAA has not been explored. We analyzed nine genes associated with familial thoracic aortic aneurysms, the vascular Ehlers–Danlos gene COL3A1 and the MTHFR p.Ala222Val variant in 155 AAA patients. The thoracic aneurysm genes selected for this study were the transforming growth factor-beta pathway genes EFEMP2, FBN1, SMAD3, TGBF2, TGFBR1, TGFBR2, and the smooth muscle cells genes ACTA2, MYH11 and MYLK. Sanger sequencing of all coding exons and exon–intron boundaries of these genes was performed. Patients with at least one first-degree relative with an aortic aneurysm were classified as familial AAA (n = 99), the others as sporadic AAA. We found 47 different rare heterozygous variants in eight genes: two pathogenic, one likely pathogenic, twenty-one variants of unknown significance (VUS) and twenty-three unlikely pathogenic variants. In familial AAA we found one pathogenic and segregating variant (COL3A1 p.Arg491X), one likely pathogenic and segregating (MYH11 p.Arg254Cys), and fifteen VUS. In sporadic patients we found one pathogenic (TGFBR2 p.Ile525Phefs*18) and seven VUS. Thirteen patients had two or more variants. These results show a previously unknown association and overlapping genetic defects between AAA and familial thoracic aneurysms, indicating that genetic testing may help to identify the cause of familial and sporadic AAA. In this view, genetic testing of these genes specifically or in a genome-wide approach may help to identify the cause of familial and sporadic AAA

    FLNC missense variants in familial noncompaction cardiomyopathy

    Get PDF
    The majority of familial noncompaction cardiomyopathy (NCCM) is explained by pathogenic variants in the same sarcomeric genes that are associated with hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Pathogenic variants in the filamin C gene (FLNC) have been linked to HCM and DCM. We expand the spectrum of FLNC related cardiomyopathies by presenting two families with likely pathogenic FLNC variants showing familial segregation of NCCM and concurrent coarctation of the aorta and/or mitral valve abnormalities

    New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis</p> <p>Results</p> <p>Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg.</p> <p>Conclusion</p> <p>This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.</p

    Destabilizing Protein Polymorphisms in the Genetic Background Direct Phenotypic Expression of Mutant SOD1 Toxicity

    Get PDF
    Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS) cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles

    A Large-Scale Full GBA1 Gene Screening in Parkinson's Disease in the Netherlands

    Get PDF
    Background: The most common genetic risk factor for Parkinson’s disease known is a damaging variant in the GBA1 gene. The entire GBA1 gene has rarely been studied in a large cohort from a single population. The objective of this study was to assess the entire GBA1 gene in Parkinson’s disease from a single large population. Methods: The GBA1 gene was assessed in 3402 Dutch Parkinson’s disease patients using nextgeneration sequencing. Frequencies were compared with Dutch controls (n = 655). Family history of Parkinson’s disease was compared in carriers and noncarriers. Results: Fifteen percent of patients had a GBA1 nonsynonymous variant (including missense, frameshift, and recombinant alleles), compared with 6.4% of c

    Familial screening and genetic counselling in hypertrophic cardiomyopathy: the Rotterdam experience

    No full text
    Hypertrophic cardiomyopathy (HCM) is a disease characterised by unexplained left ventricular hypertrophy (LVH) (i.e. LVH in the absence of another cardiac or systemic disease that could produce a similar degree of hypertrophy), electrical instability and sudden death (SD)
    • …
    corecore