401 research outputs found
Cutaneos larva migrans in travelers
The symptoms, medical history, and treatment of 98 patients with cutaneous larva migrans (creeping eruption) who attended a travel-related-disease clinic during a period of 4 years are reviewed. This condition is caused by skin-penetrating larvae of nematodes, mainly of the hookworm Ancylostoma braziliense and other nematodes of the family Ancylostomidae. Despite the ubiquitous distribution of these nematodes, in the investigated group only travelers to tropical and subtropical countries were affected; 28.9% of the patients had symptoms for > 1 month, and for 24.5% the probable incubation period was > 2 weeks. The efflorescences typically were on the lower extremities (73.4% of all locations). The buttocks and anogenital region were affected in 12.6% of all locations, and the trunk and upper extremities each were affected in 7.1%. Only a minority of patients presented with eosinophilia or an elevated serum level of IgE. No other laboratory data appeared to be related to the disease. Therapy with topical thiabendazole was successful for 98% of the patients. Systemic antihelmintic therapy was necessary in two cases because of disseminated, extensive infection
Enhanced levels of leukotriene B4 in synovial fluid in Lyme disease
The purpose of this study was to evaluate the potential role of LTB4 and cysteinyl leukotrienes in Lyme disease (LD). Therefore, a total number of 34 patients divided into four groups was studied. The patients were classified as having Lyme arthritis (n = 7) or Lyme meningitis (n = 10), and as control groups patients with a noninflammatory arthropathy (NIA) (n = 7) and healthy subjects (n = 10). LTB4 as well as LTC4 secretion from stimulated polymorphonuclear leukocytes (PMNL) from all groups of patients showed no statistical differences. LTB4 levels in synovial fluid were significantly increased in patients with Lyme arthritis (median 142 ng/ml, range 88–296) when compared to the control subjects with NIA (median 46 ng/ml, range 28–72) (p < 0.05). No statistical difference of urinary LTE4 levels between all the different groups of patients was observed. These results show that cysteinyl leukotrienes do not play an important role in the pathogenesis of LD. In contrast to previous findings in rheumatoid arthritis, LTB4 production from stimulated PMNL was not found to be increased in LD. However, the significantly elevated levels of LTB4 in synovial fluid of patients with Lyme arthritis underline the involvement of LTB4 in the pathogenesis of this disease
Persistent detwinning of iron pnictides by small magnetic fields
Our comprehensive study on EuFeAs reveals a dramatic reduction of
magnetic detwinning fields compared to other AFeAs (A = Ba, Sr, Ca)
iron pnictides by indirect magneto-elastic coupling of the Eu ions. We
find that only 0.1T are sufficient for persistent detwinning below the local
Eu ordering; above = 19K, higher fields are necessary.
Even after the field is switched off, a significant imbalance of twin domains
remains constant up to the structural and electronic phase transition (190K).
This persistent detwinning provides the unique possibility to study the low
temperature electronic in-plane anisotropy of iron pnictides without applying
any symmetrybreaking external force.Comment: accepted by Physical Review Letter
Individual Interactions of the b Subunits within the Stator of the Escherichia coli ATP Synthase.
FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in binding of subunit δ, while the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a noncatalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase
Wavelength-Scale Imaging of Trapped Ions using a Phase Fresnel lens
A microfabricated phase Fresnel lens was used to image ytterbium ions trapped
in a radio frequency Paul trap. The ions were laser cooled close to the Doppler
limit on the 369.5 nm transition, reducing the ion motion so that each ion
formed a near point source. By detecting the ion fluorescence on the same
transition, near diffraction limited imaging with spot sizes of below 440 nm
(FWHM) was achieved. This is the first demonstration of imaging trapped ions
with a resolution on the order of the transition wavelength.Comment: 8 pages, 3 figure
Background-free detection of trapped ions
We demonstrate a Doppler cooling and detection scheme for ions with low-lying
D levels which almost entirely suppresses scattered laser light background,
while retaining a high fluorescence signal and efficient cooling. We cool a
single ion with a laser on the 2S1/2 to 2P1/2 transition as usual, but repump
via the 2P3/2 level. By filtering out light on the cooling transition and
detecting only the fluorescence from the 2P_3/2 to 2S1/2 decays, we suppress
the scattered laser light background count rate to 1 per second while
maintaining a signal of 29000 per second with moderate saturation of the
cooling transition. This scheme will be particularly useful for experiments
where ions are trapped in close proximity to surfaces, such as the trap
electrodes in microfabricated ion traps, which leads to high background scatter
from the cooling beam
Ultrasensitive force and displacement detection using trapped ions
The ability to detect extremely small forces is vital for a variety of
disciplines including precision spin-resonance imaging, microscopy, and tests
of fundamental physical phenomena. Current force-detection sensitivity limits
have surpassed 1 (atto ) through coupling of micro or
nanofabricated mechanical resonators to a variety of physical systems including
single-electron transistors, superconducting microwave cavities, and individual
spins. These experiments have allowed for probing studies of a variety of
phenomena, but sensitivity requirements are ever-increasing as new regimes of
physical interactions are considered. Here we show that trapped atomic ions are
exquisitely sensitive force detectors, with a measured sensitivity more than
three orders of magnitude better than existing reports. We demonstrate
detection of forces as small as 174 (yocto ), with a
sensitivity 390 using crystals of Be
ions in a Penning trap. Our technique is based on the excitation of normal
motional modes in an ion trap by externally applied electric fields, detection
via and phase-coherent Doppler velocimetry, which allows for the discrimination
of ion motion with amplitudes on the scale of nanometers. These experimental
results and extracted force-detection sensitivities in the single-ion limit
validate proposals suggesting that trapped atomic ions are capable of detecting
of forces with sensitivity approaching 1 . We anticipate that
this demonstration will be strongly motivational for the development of a new
class of deployable trapped-ion-based sensors, and will permit scientists to
access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to
press embarg
Lessons from Love-Locks: The archaeology of a contemporary assemblage
This document is the Accepted Manuscript version. The final, definitive version of this paper has been published in Journal of Material Culture, November 2017, published by SAGE Publishing, All rights reserved.Loss of context is a challenge, if not the bane, of the ritual archaeologist’s craft. Those who research ritual frequently encounter difficulties in the interpretation of its often tantalisingly incomplete material record. Careful analysis of material remains may afford us glimpses into past ritual activity, but our often vast chronological separation from the ritual practitioners themselves prevent us from seeing the whole picture. The archaeologist engaging with structured deposits, for instance, is often forced to study ritual assemblages post-accumulation. Many nuances of its formation, therefore, may be lost in interpretation. This paper considers what insights an archaeologist could gain into the place, people, pace, and purpose of deposition by recording an accumulation of structured deposits during its formation, rather than after. To answer this, the paper will focus on a contemporary depositional practice: the love-lock. This custom involves the inscribing of names/initials onto a padlock, its attachment to a bridge or other public structure, and the deposition of the corresponding key into the water below; a ritual often enacted by a couple as a statement of their romantic commitment. Drawing on empirical data from a three-year diachronic site-specific investigation into a love-lock bridge in Manchester, UK, the author demonstrates the value of contemporary archaeology in engaging with the often enigmatic material culture of ritual accumulations.Peer reviewe
- …