505 research outputs found
Semiclassical approaches to nuclear dynamics
The extended Gutzwiller trajectory approach is presented for the
semiclassical description of nuclear collective dynamics, in line with the main
topics of the fruitful activity of V.G. Solovjov. Within the Fermi-liquid
droplet model, the leptodermous effective surface approximation was applied to
calculations of energies, sum rules and transition densities for the
neutron-proton asymmetry of the isovector giant-dipole resonance and found to
be in good agreement with the experimental data. By using the Strutinsky shell
correction method, the semiclassical collective transport coefficients such as
nuclear inertia, friction, stiffness, and moments of inertia can be derived
beyond the quantum perturbation approximation of the response function theory
and the cranking model.The averaged particle-number dependence of the low-lying
collective vibrational states are described in good agreement with basic
experimental data, mainly due to an enhancement of the collective inertia as
compared to its irrotational flow value. Shell components of the moment of
inertia are derived in terms of the periodic-orbit free-energy shell
corrections. A good agreement between the semiclassical extended Thomas-Fermi
moments of inertia with shell corrections and the quantum results is obtained
for different nuclear deformations and particle numbers. Shell effects are
shown to be exponentially dampted out with increasing temperature in all the
transport coefficients.Comment: 83 pages, 39 figures, 4 tables, corrected typos and improved Englis
Cryogenic shutter
A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature
Mean first passage time for fission potentials having structure
A schematic model of over-damped motion is presented which permits one to
calculate the mean first passage time for nuclear fission. Its asymptotic value
may exceed considerably the lifetime suggested by Kramers rate formula, which
applies only to very special, favorable potentials and temperatures. The
additional time obtained in the more general case is seen to allow for a
considerable increment in the emission of light particles.Comment: 7 pages, LaTex, 7 postscript figures; Keywords: Decay rate, mean
first passage tim
Stability and Symmetry Breaking in Metal Nanowires
A general linear stability analysis of simple metal nanowires is presented
using a continuum approach which correctly accounts for material-specific
surface properties and electronic quantum-size effects. The competition between
surface tension and electron-shell effects leads to a complex landscape of
stable structures as a function of diameter, cross section, and temperature. By
considering arbitrary symmetry-breaking deformations, it is shown that the
cylinder is the only generically stable structure. Nevertheless, a plethora of
structures with broken axial symmetry is found at low conductance values,
including wires with quadrupolar, hexapolar and octupolar cross sections. These
non-integrable shapes are compared to previous results on elliptical cross
sections, and their material-dependent relative stability is discussed.Comment: 12 pages, 4 figure
Chaoticity and Shell Effects in the Nearest-Neighbor Distributions
Statistics of the single-particle levels in a deformed Woods-Saxon potential
is analyzed in terms of the Poisson and Wigner nearest-neighbor distributions
for several deformations and multipolarities of its surface distortions. We
found the significant differences of all the distributions with a fixed value
of the angular momentum projection of the particle, more closely to the Wigner
distribution, in contrast to the full spectra with Poisson-like behavior.
Important shell effects are observed in the nearest neighbor spacing
distributions, the larger the smaller deformations of the surface
multipolarities.Comment: 10 pages and 9 figure
Periodic-Orbit Bifurcations and Superdeformed Shell Structure
We have derived a semiclassical trace formula for the level density of the
three-dimensional spheroidal cavity. To overcome the divergences occurring at
bifurcations and in the spherical limit, the trace integrals over the
action-angle variables were performed using an improved stationary phase
method. The resulting semiclassical level density oscillations and
shell-correction energies are in good agreement with quantum-mechanical
results. We find that the bifurcations of some dominant short periodic orbits
lead to an enhancement of the shell structure for "superdeformed" shapes
related to those known from atomic nuclei.Comment: 4 pages including 3 figure
The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: I. Limits and Detections
The DIRBE on the COBE spacecraft was designed primarily to conduct systematic
search for an isotropic CIB in ten photometric bands from 1.25 to 240 microns.
The results of that search are presented here. Conservative limits on the CIB
are obtained from the minimum observed brightness in all-sky maps at each
wavelength, with the faintest limits in the DIRBE spectral range being at 3.5
microns (\nu I_\nu < 64 nW/m^2/sr, 95% CL) and at 240 microns (\nu I_\nu < 28
nW/m^2/sr, 95% CL). The bright foregrounds from interplanetary dust scattering
and emission, stars, and interstellar dust emission are the principal
impediments to the DIRBE measurements of the CIB. These foregrounds have been
modeled and removed from the sky maps. Assessment of the random and systematic
uncertainties in the residuals and tests for isotropy show that only the 140
and 240 microns data provide candidate detections of the CIB. The residuals and
their uncertainties provide CIB upper limits more restrictive than the dark sky
limits at wavelengths from 1.25 to 100 microns. No plausible solar system or
Galactic source of the observed 140 and 240 microns residuals can be
identified, leading to the conclusion that the CIB has been detected at levels
of \nu I_\nu = 25+-7 and 14+-3 nW/m^2/sr at 140 and 240 microns respectively.
The integrated energy from 140 to 240 microns, 10.3 nW/m^2/sr, is about twice
the integrated optical light from the galaxies in the Hubble Deep Field,
suggesting that star formation might have been heavily enshrouded by dust at
high redshift. The detections and upper limits reported here provide new
constraints on models of the history of energy-releasing processes and dust
production since the decoupling of the cosmic microwave background from matter.Comment: 26 pages and 5 figures, accepted for publication in the Astrophyical
Journa
Low density instability in a nuclear Fermi liquid drop
The instability of a Fermi-liquid drop with respect to bulk density
distortions is considered. It is shown that the presence of the surface
strongly reduces the growth rate of the bulk instability of the finite
Fermi-liquid drop because of the anomalous dispersion term in the dispersion
relation. The instability growth rate is reduced due to the Fermi surface
distortions and the relaxation processes. The dependence of the bulk
instability on the multipolarity of the particle density fluctuations is
demonstrated for two nuclei and .Comment: 12 pages, latex, 3 ps-figures, submitted to Phys. Rev.
- …
