76,743 research outputs found
Combined large-N_c and heavy-quark operator analysis for the chiral Lagrangian with charmed baryons
The chiral Lagrangian with charmed baryons of spin and
is analyzed. We consider all counter terms that are relevant at
next-to-next-to-next-to-leading order (NLO) in a chiral extrapolation of
the charmed baryon masses. At NLO we find 16 low-energy parameters. There
are 3 mass parameters for the anti-triplet and the two sextet baryons, 6
parameters describing the meson-baryon vertices and 7 symmetry breaking
parameters. The heavy-quark spin symmetry predicts four sum rules for the
meson-baryon vertices and degenerate masses for the two baryon sextet fields.
Here a large- operator analysis at NLO suggests the relevance of one
further spin-symmetry breaking parameter. Going from NLO to NLO adds 17
chiral symmetry breaking parameters and 24 symmetry preserving parameters. For
the leading symmetry conserving two-body counter terms involving two baryon
fields and two Goldstone boson fields we find 36 terms. While the heavy-quark
spin symmetry leads to sum rules, an expansion in at
next-to-leading order (NLO) generates parameter relations. A
combined expansion leaves 3 unknown parameters only. For the symmetry breaking
counter terms we find 17 terms, for which there are sum rules from the
heavy-quark spin symmetry and sum rules from a expansion at
NLO.Comment: 34 pages - one table - corrections applie
Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Data Access
Pregel is a popular distributed computing model for dealing with large-scale
graphs. However, it can be tricky to implement graph algorithms correctly and
efficiently in Pregel's vertex-centric model, especially when the algorithm has
multiple computation stages, complicated data dependencies, or even
communication over dynamic internal data structures. Some domain-specific
languages (DSLs) have been proposed to provide more intuitive ways to implement
graph algorithms, but due to the lack of support for remote access --- reading
or writing attributes of other vertices through references --- they cannot
handle the above mentioned dynamic communication, causing a class of Pregel
algorithms with fast convergence impossible to implement.
To address this problem, we design and implement Palgol, a more declarative
and powerful DSL which supports remote access. In particular, programmers can
use a more declarative syntax called chain access to naturally specify dynamic
communication as if directly reading data on arbitrary remote vertices. By
analyzing the logic patterns of chain access, we provide a novel algorithm for
compiling Palgol programs to efficient Pregel code. We demonstrate the power of
Palgol by using it to implement several practical Pregel algorithms, and the
evaluation result shows that the efficiency of Palgol is comparable with that
of hand-written code.Comment: 12 pages, 10 figures, extended version of APLAS 2017 pape
Detections of water ice, hydrocarbons, and 3.3um PAH in z~2 ULIRGs
We present the first detections of the 3um water ice and 3.4um amorphous
hydrocarbon (HAC) absorption features in z~2 ULIRGs. These are based on deep
rest-frame 2-8um Spitzer IRS spectra of 11 sources selected for their
appreciable silicate absorption. The HAC-to-silicate ratio for our z~2 sources
is typically higher by a factor of 2-5 than that observed in the Milky Way.
This HAC `excess' suggests compact nuclei with steep temperature gradients as
opposed to predominantly host obscuration. Beside the above molecular
absorption features, we detect the 3.3um PAH emission feature in one of our
sources with three more individual spectra showing evidence for it. Stacking
analysis suggests that water ice, hydrocarbons, and PAH are likely present in
the bulk of this sample even when not individually detected. The most
unexpected result of our study is the lack of clear detections of the 4.67um CO
gas absorption feature. Only three of the sources show tentative signs of this
feature and at significantly lower levels than has been observed in local
ULIRGs. Overall, we find that the closest local analogs to our sources, in
terms of 3-4um color, HAC-to-silicate and ice-to-silicate ratios, as well as
low PAH equivalent widths are sources dominated by deeply obscured nuclei. Such
sources form only a small fraction of ULIRGs locally and are commonly believed
to be dominated by buried AGN. Our sample suggests that, in absolute number,
such buried AGN are at least an order of magnitude more common at z~2 than
today. The presence of PAH suggests that significant levels of star-formation
are present even if the obscured AGN typically dominate the power budget.Comment: 39 pages, 14 figures, accepted for publication in Ap
Multipartite entanglement in four-qubit cluster-class states
Based on quantitative complementarity relations (QCRs), we analyze the
multipartite correlations in four-qubit cluster-class states. It is proven
analytically that the average multipartite correlation is entanglement
monotone. Moreover, it is also shown that the mixed three-tangle is a
correlation measure compatible with the QCRs in this kind of quantum states.
More arrestingly, with the aid of the QCRs, a set of hierarchy entanglement
measures is obtained rigorously in the present system.Comment: 7 pages, 3 figs, version 3, some refs. are adde
Localized gap soliton trains of Bose-Einstein condensates in an optical lattice
We develop a systematic analytical approach to study the linear and nonlinear
solitary excitations of quasi-one-dimensional Bose-Einstein condensates trapped
in an optical lattice. For the linear case, the Bloch wave in the energy
band is a linear superposition of Mathieu's functions and ;
and the Bloch wave in the band gap is a linear superposition of
and . For the nonlinear case, only solitons inside the band gaps are
likely to be generated and there are two types of solitons -- fundamental
solitons (which is a localized and stable state) and sub-fundamental solitons
(which is a lacalized but unstable state). In addition, we find that the
pinning position and the amplitude of the fundamental soliton in the lattice
can be controlled by adjusting both the lattice depth and spacing. Our
numerical results on fundamental solitons are in quantitative agreement with
those of the experimental observation [Phys. Rev. Lett. {\bf92}, 230401
(2004)]. Furthermore, we predict that a localized gap soliton train consisting
of several fundamental solitons can be realized by increasing the length of the
condensate in currently experimental conditions.Comment: 9 pages, 6 figures, accepted for publicaiton in PR
Flicker Noise in Bilayer Graphene Transistors
We present the results of the experimental investigation of the low -
frequency noise in bilayer graphene transistors. The back - gated devices were
fabricated using the electron beam lithography and evaporation. The charge
neutrality point for the fabricated transistors was around 10 V. The noise
spectra at frequencies above 10 - 100 Hz were of the 1/f - type with the
spectral density on the order of 10E-23 - 10E-22 A2/Hz at the frequency of 1
kHz. The deviation from the 1/f spectrum at the frequencies below 10 -100 Hz
indicates that the noise is of the carrier - number fluctuation origin due to
the carrier trapping by defects. The Hooge parameter of 10E-4 was extracted for
this type of devices. The gate dependence of the noise spectral density
suggests that the noise is dominated by the contributions from the ungated part
of the device channel and by the contacts. The obtained results are important
for graphene electronic applications
Quantum state redistribution based on a generalized decoupling
We develop a simple protocol for a one-shot version of quantum state
redistribution, which is the most general two-terminal source coding problem.
The protocol is simplified from a combination of protocols for the fully
quantum reverse Shannon and fully quantum Slepian-Wolf problems, with its
time-reversal symmetry being apparent. When the protocol is applied to the case
where the redistributed states have a tensor power structure, more natural
resource rates are obtained
Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In,Ga)As quantum dots
The problem of how single "central" spins interact with a nuclear spin bath
is essential for understanding decoherence and relaxation in many quantum
systems, yet is highly nontrivial owing to the many-body couplings involved.
Different models yield widely varying timescales and dynamical responses
(exponential, power-law, Gaussian, etc). Here we detect the small random
fluctuations of central spins in thermal equilibrium (holes in singly-charged
(In,Ga)As quantum dots) to reveal the timescales and functional form of
bath-induced spin relaxation. This spin noise indicates long (400 ns) spin
correlation times at zero magnetic field, that increase to 5 s as
hole-nuclear coupling is suppressed with small (100 G) applied fields.
Concomitantly, the noise lineshape evolves from Lorentzian to power-law,
indicating a crossover from exponential to inverse-log dynamics.Comment: 4 pages & 4 figures, + 8 pages supplemental materia
- …
