76,743 research outputs found

    Combined large-N_c and heavy-quark operator analysis for the chiral Lagrangian with charmed baryons

    Full text link
    The chiral SU(3)SU(3) Lagrangian with charmed baryons of spin JP=1/2+J^P=1/2^+ and JP=3/2+J^P=3/2^+ is analyzed. We consider all counter terms that are relevant at next-to-next-to-next-to-leading order (N3^3LO) in a chiral extrapolation of the charmed baryon masses. At N2^2LO we find 16 low-energy parameters. There are 3 mass parameters for the anti-triplet and the two sextet baryons, 6 parameters describing the meson-baryon vertices and 7 symmetry breaking parameters. The heavy-quark spin symmetry predicts four sum rules for the meson-baryon vertices and degenerate masses for the two baryon sextet fields. Here a large-NcN_c operator analysis at NLO suggests the relevance of one further spin-symmetry breaking parameter. Going from N2^2LO to N3^3LO adds 17 chiral symmetry breaking parameters and 24 symmetry preserving parameters. For the leading symmetry conserving two-body counter terms involving two baryon fields and two Goldstone boson fields we find 36 terms. While the heavy-quark spin symmetry leads to 3616=2036-16=20 sum rules, an expansion in 1/Nc1/N_c at next-to-leading order (NLO) generates 367=2936-7= 29 parameter relations. A combined expansion leaves 3 unknown parameters only. For the symmetry breaking counter terms we find 17 terms, for which there are 179=817-9=8 sum rules from the heavy-quark spin symmetry and 175=1217-5=12 sum rules from a 1/Nc1/N_c expansion at NLO.Comment: 34 pages - one table - corrections applie

    Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Data Access

    Full text link
    Pregel is a popular distributed computing model for dealing with large-scale graphs. However, it can be tricky to implement graph algorithms correctly and efficiently in Pregel's vertex-centric model, especially when the algorithm has multiple computation stages, complicated data dependencies, or even communication over dynamic internal data structures. Some domain-specific languages (DSLs) have been proposed to provide more intuitive ways to implement graph algorithms, but due to the lack of support for remote access --- reading or writing attributes of other vertices through references --- they cannot handle the above mentioned dynamic communication, causing a class of Pregel algorithms with fast convergence impossible to implement. To address this problem, we design and implement Palgol, a more declarative and powerful DSL which supports remote access. In particular, programmers can use a more declarative syntax called chain access to naturally specify dynamic communication as if directly reading data on arbitrary remote vertices. By analyzing the logic patterns of chain access, we provide a novel algorithm for compiling Palgol programs to efficient Pregel code. We demonstrate the power of Palgol by using it to implement several practical Pregel algorithms, and the evaluation result shows that the efficiency of Palgol is comparable with that of hand-written code.Comment: 12 pages, 10 figures, extended version of APLAS 2017 pape

    Detections of water ice, hydrocarbons, and 3.3um PAH in z~2 ULIRGs

    Get PDF
    We present the first detections of the 3um water ice and 3.4um amorphous hydrocarbon (HAC) absorption features in z~2 ULIRGs. These are based on deep rest-frame 2-8um Spitzer IRS spectra of 11 sources selected for their appreciable silicate absorption. The HAC-to-silicate ratio for our z~2 sources is typically higher by a factor of 2-5 than that observed in the Milky Way. This HAC `excess' suggests compact nuclei with steep temperature gradients as opposed to predominantly host obscuration. Beside the above molecular absorption features, we detect the 3.3um PAH emission feature in one of our sources with three more individual spectra showing evidence for it. Stacking analysis suggests that water ice, hydrocarbons, and PAH are likely present in the bulk of this sample even when not individually detected. The most unexpected result of our study is the lack of clear detections of the 4.67um CO gas absorption feature. Only three of the sources show tentative signs of this feature and at significantly lower levels than has been observed in local ULIRGs. Overall, we find that the closest local analogs to our sources, in terms of 3-4um color, HAC-to-silicate and ice-to-silicate ratios, as well as low PAH equivalent widths are sources dominated by deeply obscured nuclei. Such sources form only a small fraction of ULIRGs locally and are commonly believed to be dominated by buried AGN. Our sample suggests that, in absolute number, such buried AGN are at least an order of magnitude more common at z~2 than today. The presence of PAH suggests that significant levels of star-formation are present even if the obscured AGN typically dominate the power budget.Comment: 39 pages, 14 figures, accepted for publication in Ap

    Multipartite entanglement in four-qubit cluster-class states

    Get PDF
    Based on quantitative complementarity relations (QCRs), we analyze the multipartite correlations in four-qubit cluster-class states. It is proven analytically that the average multipartite correlation EmsE_{ms} is entanglement monotone. Moreover, it is also shown that the mixed three-tangle is a correlation measure compatible with the QCRs in this kind of quantum states. More arrestingly, with the aid of the QCRs, a set of hierarchy entanglement measures is obtained rigorously in the present system.Comment: 7 pages, 3 figs, version 3, some refs. are adde

    Localized gap soliton trains of Bose-Einstein condensates in an optical lattice

    Full text link
    We develop a systematic analytical approach to study the linear and nonlinear solitary excitations of quasi-one-dimensional Bose-Einstein condensates trapped in an optical lattice. For the linear case, the Bloch wave in the nthnth energy band is a linear superposition of Mathieu's functions cen1ce_{n-1} and sense_n; and the Bloch wave in the nthnth band gap is a linear superposition of cence_n and sense_n. For the nonlinear case, only solitons inside the band gaps are likely to be generated and there are two types of solitons -- fundamental solitons (which is a localized and stable state) and sub-fundamental solitons (which is a lacalized but unstable state). In addition, we find that the pinning position and the amplitude of the fundamental soliton in the lattice can be controlled by adjusting both the lattice depth and spacing. Our numerical results on fundamental solitons are in quantitative agreement with those of the experimental observation [Phys. Rev. Lett. {\bf92}, 230401 (2004)]. Furthermore, we predict that a localized gap soliton train consisting of several fundamental solitons can be realized by increasing the length of the condensate in currently experimental conditions.Comment: 9 pages, 6 figures, accepted for publicaiton in PR

    Flicker Noise in Bilayer Graphene Transistors

    Full text link
    We present the results of the experimental investigation of the low - frequency noise in bilayer graphene transistors. The back - gated devices were fabricated using the electron beam lithography and evaporation. The charge neutrality point for the fabricated transistors was around 10 V. The noise spectra at frequencies above 10 - 100 Hz were of the 1/f - type with the spectral density on the order of 10E-23 - 10E-22 A2/Hz at the frequency of 1 kHz. The deviation from the 1/f spectrum at the frequencies below 10 -100 Hz indicates that the noise is of the carrier - number fluctuation origin due to the carrier trapping by defects. The Hooge parameter of 10E-4 was extracted for this type of devices. The gate dependence of the noise spectral density suggests that the noise is dominated by the contributions from the ungated part of the device channel and by the contacts. The obtained results are important for graphene electronic applications

    Quantum state redistribution based on a generalized decoupling

    Full text link
    We develop a simple protocol for a one-shot version of quantum state redistribution, which is the most general two-terminal source coding problem. The protocol is simplified from a combination of protocols for the fully quantum reverse Shannon and fully quantum Slepian-Wolf problems, with its time-reversal symmetry being apparent. When the protocol is applied to the case where the redistributed states have a tensor power structure, more natural resource rates are obtained

    Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In,Ga)As quantum dots

    Full text link
    The problem of how single "central" spins interact with a nuclear spin bath is essential for understanding decoherence and relaxation in many quantum systems, yet is highly nontrivial owing to the many-body couplings involved. Different models yield widely varying timescales and dynamical responses (exponential, power-law, Gaussian, etc). Here we detect the small random fluctuations of central spins in thermal equilibrium (holes in singly-charged (In,Ga)As quantum dots) to reveal the timescales and functional form of bath-induced spin relaxation. This spin noise indicates long (400 ns) spin correlation times at zero magnetic field, that increase to \sim5 μ\mus as hole-nuclear coupling is suppressed with small (100 G) applied fields. Concomitantly, the noise lineshape evolves from Lorentzian to power-law, indicating a crossover from exponential to inverse-log dynamics.Comment: 4 pages & 4 figures, + 8 pages supplemental materia
    corecore