28,689 research outputs found
Electroweak Precision Physics at e+ e- Colliders with RacoonWW
We present precise predictions for the processes e+ e- -> WW -> 4f(gamma) at
LEP2 and future Linear-Collider (LC) energies obtained with the Monte Carlo
generator RacoonWW. The program RacoonWW includes the complete O(alpha)
electroweak radiative corrections to e+ e- -> WW -> 4f in the double-pole
approximation (DPA). While the virtual corrections are treated in DPA, the
calculation of the bremsstrahlung corrections is based on the full lowest-order
matrix elements to the processes e+ e- -> 4f+gamma. This asymmetric treatment
of virtual and real photons requires a careful matching of the arising infrared
and collinear singularities. We also take into account higher-order
initial-state photon radiation via the structure-function method. Here, we
briefly describe the RacoonWW approach, give numerical results for the total
W-pair production cross sections, confront them with LEP2 data, and study the
impact of the radiative corrections on angular and W-invariant-mass
distributions at LEP2 and LC energies.Comment: 12 pages, 13 postscript figures, to appear in the Proceedings of the
22nd annual MRST Conference on Theoretical High Energy Physics (MRST 2000),
Rochester, New York, May 8-9, 200
W-pair production at future e+e- colliders: precise predictions from RACOONWW
We present numerical results for total cross sections and various
distributions for e+e- --> WW --> 4f(+gamma) at a future 500GeV linear
collider, obtained from the Monte Carlo generator RACOONWW. This generator is
the first one that includes O(alpha) electroweak radiative corrections in the
double-pole approximation completely. Owing to their large size the corrections
are of great phenomenological importance.Comment: 11 pages, latex, 10 postscript file
Electroweak Radiative Corrections to Off-Shell W-Pair Production
We briefly describe the RacoonWW approach to calculate radiative corrections
to e+ e- -> W W -> 4 fermions and present numerical results for the total
W-pair production cross section at LEP2.Comment: 3 pages, 2 figures, talk given at the DPF2000 meeting, Columbus, OH,
August 9-12, 200
Probing anomalous quartic gauge-boson couplings via e+e- --> 4fermions+gamma
All lowest-order amplitudes for e+e- --> 4f+gamma are calculated including
five anomalous quartic gauge-boson couplings that are allowed by
electromagnetic gauge invariance and the custodial SU(2)_c symmetry. Three of
these anomalous couplings correspond to the operators L_0, L_c, and L_n that
have been constrained by the LEP collaborations in WWgamma production. The
anomalous couplings are incorporated in the Monte Carlo generator RACOONWW.
Moreover, for the processes e+e- --> 4f+gamma RACOONWW is improved upon
including leading universal electroweak corrections such as initial-state
radiation. The discussion of numerical results illustrates the size of the
leading corrections as well as the impact of the anomalous quartic couplings
for LEP2 energies and at 500GeV.Comment: 27 pages, latex, 42 postscript files, some misprints correcte
Electric potential distributions at the interface between plasmasheet clouds
At the interface between two plasma clouds with different densities, temperatures, and/or bulk velocities, there are large charge separation electric fields which can be modeled in the framework of a collisionless theory for tangential discontinuities. Two different classes of layers were identified: the first one corresponds to (stable) ion layers which are thicker than one ion Lamor radius; the second one corresponds to (unstable) electron layers which are only a few electron Larmor radii thick. It is suggested that these thin electron layers with large electric potential gradients (up to 400 mV/m) are the regions where large-amplitude electrostatic waves are spontaneously generated. These waves scatter the pitch angles of the ambient plasmasheet electron into the atmospheric loss cone. The unstable electron layers can therefore be considered as the seat of strong pitch angle scattering for the primary auroral electrons
Abrasion of flat rotating shapes
We report on the erosion of flat linoleum "pebbles" under steady rotation in
a slurry of abrasive grit. To quantify shape as a function of time, we develop
a general method in which the pebble is photographed from multiple angles with
respect to the grid of pixels in a digital camera. This reduces digitization
noise, and allows the local curvature of the contour to be computed with a
controllable degree of uncertainty. Several shape descriptors are then employed
to follow the evolution of different initial shapes toward a circle, where
abrasion halts. The results are in good quantitative agreement with a simple
model, where we propose that points along the contour move radially inward in
proportion to the product of the radius and the derivative of radius with
respect to angle
- …