7,259 research outputs found
Sensitivity of the isotopologues of hydronium to variation of the electron-to-proton mass ratio
We study the sensitivity of the microwave and submillimeter transitions of
the isotopologues of hydronium to the variation of the electron-to-proton mass
ratio mu. These sensitivities are enhanced for the low frequency mixed
inversion-rotational transitions. The lowest frequency transition (6.6 GHz)
takes place for isotopologue H2DO+ and respective sensitivity to mu-variation
is close to 200. This is about two orders of magnitude larger than the
sensitivity of the inversion transition in ammonia, which is currently used for
the search of mu-variation in astrophysics.Comment: 6 pages; v2: references correcte
An empirical initial-final mass relation from hot, massive white dwarfs in NGC 2168 (M35)
The relation between the zero-age main sequence mass of a star and its
white-dwarf remnant (the initial-final mass relation) is a powerful tool for
exploration of mass loss processes during stellar evolution. We present an
empirical derivation of the initial-final mass relation based on spectroscopic
analysis of seven massive white dwarfs in NGC 2168 (M35). Using an internally
consistent data set, we show that the resultant white dwarf mass increases
monotonically with progenitor mass for masses greater than 4 solar masses, one
of the first open clusters to show this trend. We also find two massive white
dwarfs foreground to the cluster that are otherwise consistent with cluster
membership. These white dwarfs can be explained as former cluster members
moving steadily away from the cluster at speeds of <~0.5 km/s since their
formation and may provide the first direct evidence of the loss of white dwarfs
from open clusters. Based on these data alone, we constrain the upper mass
limit of WD progenitors to be >=5.8 solar masses at the 90% confidence level
for a cluster age of 150 Myr.Comment: 14 pages, 3 figures. Accepted for publication in the Astrophysical
Journal Letters. Contains some acknowledgements not in accepted version (for
space reasons), otherwise identical to accepted versio
Cosmological Reionization
In popular cosmological scenarios, some time beyond a redshift of 10, stars
within protogalaxies created the first heavy elements; these systems, together
perhaps with an early population of quasars, generated the ultraviolet
radiation and mechanical energy that reheated and reionized the cosmos. The
history of the Universe during and soon after these crucial formative stages is
recorded in the all-pervading intergalactic medium (IGM), which contains most
of the ordinary baryonic material left over from the big bang. Throughout the
epoch of structure formation, the IGM becomes clumpy and acquires peculiar
motions under the influence of gravity, and acts as a source for the gas that
gets accreted, cools, and forms stars within galaxies, and as a sink for the
metal enriched material, energy, and radiation which they eject.Comment: LateX, 13 pages, 4 figures, slightly revised version (corrected
several typos), to appear in Phil. Trans. R. Soc. London A (2000) 35
Fatal anaphylactic sting reaction in a patient with mastocytosis
We report on a 33-year-old female patient with indolent systemic mastocytosis and urticaria pigmentosa who died of an anaphylactic reaction after a yellow jacket sting. As she had no history of previous anaphylactic sting reaction, there was no testing performed in order to detect hymenoptera venom sensitization. But even if a sensitization had been diagnosed, no venom immunotherapy (VIT) would have been recommended. It is almost certain that VIT would have saved her life and it is most likely that VIT is indicated in some patients with mastocytosis with no history of anaphylactic sting reaction. However, no criteria have been established in order to allow a selection of mastocytosis patients eligible for such a `prophylactic' VIT. Copyright (C) 2008 S. Karger AG, Basel
Star-forming regions of the Aquila rift cloud complex. II. Turbulence in molecular cores probed by NH3 emission
(Abridged) Aims. We intend to derive statistical properties of stochastic gas
motion inside the dense low mass star forming molecular cores traced by
NH3(1,1) and (2,2) emission lines. Methods. We use the spatial two-point
autocorrelation (ACF) and structure functions calculated from maps of the
radial velocity fields. Results. We find oscillating ACFs which eventually
decay to zero with increasing lags on scales of 0.04 <= l <= 0.5 pc. The
current paradigm supposes that the star formation process is controlled by the
interplay between gravitation and turbulence, the latter preventing molecular
cores from a rapid collapse due to their own gravity. Thus, oscillating ACFs
may indicate a damping of the developed turbulent flows surrounding the dense
but less turbulent core - a transition to dominating gravitational forces and,
hence, to gravitational collapse.Comment: 11 pages, 16 figures, 3 tables, to be published in Astronomy and
Astrophysic
Methanol as a tracer of fundamental constants
The methanol molecule CH3OH has a complex microwave spectrum with a large
number of very strong lines. This spectrum includes purely rotational
transitions as well as transitions with contributions of the internal degree of
freedom associated with the hindered rotation of the OH group. The latter takes
place due to the tunneling of hydrogen through the potential barriers between
three equivalent potential minima. Such transitions are highly sensitive to
changes in the electron-to-proton mass ratio, mu = m_e/m_p, and have different
responses to mu-variations. The highest sensitivity is found for the mixed
rotation-tunneling transitions at low frequencies. Observing methanol lines
provides more stringent limits on the hypothetical variation of mu than ammonia
observation with the same velocity resolution. We show that the best quality
radio astronomical data on methanol maser lines constrain the variability of mu
in the Milky Way at the level of |Delta mu/mu| < 28x10^{-9} (1sigma) which is
in line with the previously obtained ammonia result, |Delta mu/mu| < 29x10^{-9}
(1\sigma). This estimate can be further improved if the rest frequencies of the
CH3OH microwave lines will be measured more accurately.Comment: 7 pages, 1 table, 1 figure. Accepted for publication in Ap
Static Critical Behavior of the Spin-Freezing Transition in the Geometrically Frustrated Pyrochlore Antiferromagnet Y2Mo2O7
Some frustrated pyrochlore antiferromagnets, such as Y2Mo2O7, show a
spin-freezing transition and magnetic irreversibilities below a temperature Tf
similar to what is observed nonlinear magnetization measurements on Y2Mo2O7
that provide strong evidence that there is an underlying thermodynamic phase
transition at Tf, which is characterized by critical exponents \gamma \approx
2.8 and \beta \approx 0.8. These values are typical of those found in random
spin glasses, despite the fact that the level of random disorder in Y2Mo2O7 is
immeasurably small.Comment: Latex file, calls for 4 encapsulated postscript figures (included).
Submitted to Phys. Rev. Letters
Pulsation Period Changes as a Tool to Identify Pre-Zero Age Horizontal Branch Stars
One of the most dramatic events in the life of a low-mass star is the He
flash, which takes place at the tip of the red giant branch (RGB) and is
followed by a series of secondary flashes before the star settles into the
zero-age horizontal branch (ZAHB). Yet, no stars have been positively
identified in this key evolutionary phase, mainly for two reasons: first, this
pre-ZAHB phase is very short compared to other major evolutionary phases in the
life of a star; and second, these pre-ZAHB stars are expected to overlap the
loci occupied by asymptotic giant branch (AGB), HB and RGB stars observed in
the color-magnitude diagram (CMD). We investigate the possibility of detecting
these stars through stellar pulsations, since some of them are expected to
rapidly cross the Cepheid/RR Lyrae instability strip in their route from the
RGB tip to the ZAHB, thus becoming pulsating stars along the way. As a
consequence of their very high evolutionary speed, some of these stars may
present anomalously large period change rates. We constructed an extensive grid
of stellar models and produced pre-ZAHB Monte Carlo simulations appropriate for
the case of the Galactic globular cluster M3 (NGC 5272), where a number of RR
Lyrae stars with high period change rates are found. Our results suggest that
some -- but certainly not all -- of the RR Lyrae stars in M3 with large period
change rates are in fact pre-ZAHB pulsators.Comment: Conference Proceedings HELAS Workshop on 'Synergies between solar and
stellar modelling', Rome, June 2009, Astrophys. Space Sci., in the pres
The True Incidence of Magnetism among Field White Dwarfs
We study the incidence of magnetism in white dwarfs from three large and
well-observed samples of hot, cool, and nearby white dwarfs in order to test
whether the fraction of magnetic degenerates is biased, and whether it varies
with effective temperature, cooling age, or distance. The magnetic fraction is
considerably higher for the cool sample of Bergeron, Ruiz, and Leggett, and the
Holberg, Oswalt, and Sion sample of local white dwarfs that it is for the
generally-hotter white dwarfs of the Palomar Green Survey. We show that the
mean mass of magnetic white dwarfs in this survey is 0.93 solar masses or more,
so there may be a strong bias against their selection in the magnitude-limited
Palomar Green Survey. We argue that this bias is not as important in the
samples of cool and nearby white dwarfs. However, this bias may not account for
all of the difference in the magnetic fractions of these samples.
It is not clear that the magnetic white dwarfs in the cool and local samples
are drawn from the same population as the hotter PG stars. In particular, two
or threee of the cool sample are low-mass white dwarfs in unresolved binary
systems. Moreover, there is a suggestion from the local sample that the
fractional incidence may increase with decreasing temperature, luminosity,
and/or cooling age. Overall, the true incidence of magnetism at the level of 2
megagauss or greater is at least 10%, and could be higher. Limited studies
capable of detecting lower field strengths down to 10 kilogauss suggest by
implication that the total fraction may be substantially higher than 10%.Comment: 16 pages, 2 figures, Astronomical Journal in press -- Jan 2003 issu
- …
