32,746 research outputs found
Discussion quality diffuses in the digital public square
Studies of online social influence have demonstrated that friends have
important effects on many types of behavior in a wide variety of settings.
However, we know much less about how influence works among relative strangers
in digital public squares, despite important conversations happening in such
spaces. We present the results of a study on large public Facebook pages where
we randomly used two different methods--most recent and social feedback--to
order comments on posts. We find that the social feedback condition results in
higher quality viewed comments and response comments. After measuring the
average quality of comments written by users before the study, we find that
social feedback has a positive effect on response quality for both low and high
quality commenters. We draw on a theoretical framework of social norms to
explain this empirical result. In order to examine the influence mechanism
further, we measure the similarity between comments viewed and written during
the study, finding that similarity increases for the highest quality
contributors under the social feedback condition. This suggests that, in
addition to norms, some individuals may respond with increased relevance to
high-quality comments.Comment: 10 pages, 6 figures, 2 table
Interaction of a Modulated Electron Beam with a Plasma
The results of a theoretical and experimental investigation of the high-frequency interaction of an electron beam with a plasma are reported. An electron beam, modulated at a microwave frequency, passes through a uniform region of a mercury arc discharge after which it is demodulated. Exponentially growing wave amplification along the electron beam was experimentally observed for the first time at a microwave frequency equal to the plasma frequency. Approximate theories of the effects of 1) plasma-electron collision frequencies, 2) plasma-electron thermal velocities and 3) finite beam diameter, are given. In a second experiment the interaction between a modulated electron beam and a slow electrostatic wave on a plasma column has been studied. A strong interaction occurs when the velocity of the electron beam is approximately equal to the velocity of the wave and the interaction is essentially the same as that which occurs in traveling-wave amplifiers, except that here the plasma colum replaces the usual helical slow-wave circuit. The theory predicting rates of growth is presented and compared with the experimental results
The horofunction boundary of the Hilbert geometry
We investigate the horofunction boundary of the Hilbert geometry defined on
an arbitrary finite-dimensional bounded convex domain D. We determine its set
of Busemann points, which are those points that are the limits of
`almost-geodesics'. In addition, we show that any sequence of points converging
to a point in the horofunction boundary also converges in the usual sense to a
point in the Euclidean boundary of D. We prove that all horofunctions are
Busemann points if and only if the set of extreme sets of the polar of D is
closed in the Painleve-Kuratowski topology.Comment: 24 pages, 2 figures; minor changes, examples adde
Analytical model of brittle destruction based on hypothesis of scale similarity
The size distribution of dust particles in nuclear fusion devices is close to
the power function. A function of this kind can be the result of brittle
destruction. From the similarity assumption it follows that the size
distribution obeys the power law with the exponent between -4 and -1. The model
of destruction has much in common with the fractal theory. The power exponent
can be expressed in terms of the fractal dimension. Reasonable assumptions on
the shape of fragments concretize the power exponent, and vice versa possible
destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure
Supersonic quantum communication
When locally exciting a quantum lattice model, the excitation will propagate
through the lattice. The effect is responsible for a wealth of non-equilibrium
phenomena, and has been exploited to transmit quantum information through spin
chains. It is a commonly expressed belief that for local Hamiltonians, any such
propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson
theorem states that in spin models, all effects caused by a perturbation are
limited to a causal cone defined by a constant speed, up to exponentially small
corrections. In this work we show that for translationally invariant bosonic
models with nearest-neighbor interactions, this belief is incorrect: We prove
that one can encounter excitations which accelerate under the natural dynamics
of the lattice and allow for reliable transmission of information faster than
any finite speed of sound. The effect is only limited by the model's range of
validity (eventually by relativity). It also implies that in non-equilibrium
dynamics of strongly correlated bosonic models far-away regions may become
quickly entangled, suggesting that their simulation may be much harder than
that of spin chains even in the low energy sector.Comment: 4+3 pages, 1 figure, some material added, typographic error fixe
Search for the second forbidden beta decay of 8B to the ground state of 8Be
A significant decay branch of 8B to the ground state of 8Be would extend the
solar neutrino spectrum to higher energies than anticipated in the standard
solar models. These high-energy neutrinos would affect current neutrino
oscillation results and also would be a background to measurements of the hep
process. We have measured the delayed alpha particles from the decay of 8B,
with the goal of observing the two 46-keV alpha particles arising from the
ground-state decay. The 8B was produced using an in-flight radioactive beam
technique. It was implanted in a silicon PIN-diode detector that was capable of
identifying the alpha-particles from the 8Be ground state. From this
measurement we find an upper limit (at 90% confidence level) of 7.3 x 10^{-5}
for the branching ratio to the ground state. In addition to describing this
measurement, we present a theoretical calculation for this branching ratio.Comment: One reference corrected. Minor edits in tex
Scanning Tunneling Spectroscopic Studies of the Effects of Dielectrics and Metallic Substrates on the Local Electronic Characteristics of Graphene
Atomically resolved imaging and spectroscopic characteristics of
graphene grown by chemical vapor deposition (CVD) on copper
foils are investigated and compared with those of mechanical
exfoliated graphene on SiO_2. For exfoliated graphene, the local
spectral deviations from ideal behavior may be attributed to strain
induced by the SiO_2 substrate. For CVD grown graphene, the
lattice structure appears strongly distorted by the underlying
copper, with regions in direct contact with copper showing nearly
square lattices whereas suspended regions from thermal relaxation
exhibiting nearly honeycomb or hexagonal lattice structures. The
electronic density of states (DOS) correlates closely with the
atomic arrangements of carbon, showing excess zero-bias
tunneling conductance and nearly energy-independent DOS for
strongly distorted graphene, in contrast to the linearly dispersive
DOS for suspended graphene. These results suggest that graphene
can interact strongly with both metallic and dielectric materials in
close proximity, leading to non-negligible modifications to the
electronic properties
Bubble Growth in Superfluid 3-He: The Dynamics of the Curved A-B Interface
We study the hydrodynamics of the A-B interface with finite curvature. The
interface tension is shown to enhance both the transition velocity and the
amplitudes of second sound. In addition, the magnetic signals emitted by the
growing bubble are calculated, and the interaction between many growing bubbles
is considered.Comment: 20 pages, 3 figures, LaTeX, ITP-UH 11/9
- …
