59 research outputs found

    CYTOCHROME P450 3A13 AND ENDOTHELIN JOINTLY MEDIATE DUCTUS ARTERIOSUS CONSTRICTION TO OXYGEN IN MICE

    Get PDF
    The fetal ductus arteriosus (DA) contracts to oxygen, and this feature, maturing through gestation, is considered important for its closure at birth. We have previously obtained evidence of the involvement of cytochrome P-450, possibly of the 3A subfamily (CYP3A), in oxygen sensing and have also identified endothelin (ET)-1 as the attendant effector for the contraction. Here, we examined comparatively wild-type (WT) and CYP3Anull (Cyp3a(-/-)) mice for direct validation of this concept. We found that the CYP3A subfamily is represented only by CYP3A13 in the WT DA. CYP3A13 was also detected in the DA by immunofluorescence microscopy, being primarily colocalized with the endoplasmic reticulum in both endothelial and muscle cells. However, a distinct signal was also evident in the plasma membrane. Isolated DAs from term WT animals developed a sustained contraction to oxygen with transient contractions superimposed. Conversely, no tonic response occurred in Cyp3a(-/-) DAs, whereas the phasic response persisted unabated. Oxygen did not contract the preterm WT DA but caused a full-fledged contraction after retinoic acid (RA) treatment. RA also promoted an oxygen contraction in the Cyp3a(-/-) DA. However, responses of RA-treated WT and Cyp3a(-/-) mice differed in that only the former abated with ET-1 suppression. This implies the existence of an alternative target for RA responsible for the oxygen-induced contraction in the absence of CYP3A13. In vivo, the DA was constricted in WT and Cyp3a(-/-) newborns, although with a tendency to be less narrowed in the mutant. We conclude that oxygen acts primarily through the complex CYP3A13 (sensor)/ET-1 (effector) and, in an accessory way, directly onto ET-1. However, even in the absence of CYP3A13, the DA may close postnatally thanks to the contribution of ET-1 and the likely involvement of compensating mechanism(s) identifiable with an alternative oxygen-sensing system and/or the withdrawal of relaxing influence(s) operating prenatally

    Graphene promotes axon elongation through local stall of Nerve Growth Factor signaling endosomes

    Full text link
    Several works reported increased differentiation of neuronal cells grown on graphene; however, the molecular mechanism driving axon elongation on this material has remained elusive. Here, we study the axonal transport of nerve growth factor (NGF), the neurotrophin supporting development of peripheral neurons, as a key player in the time course of axonal elongation of dorsal root ganglion neurons on graphene. We find that graphene drastically reduces the number of retrogradely transported NGF vesicles in favor of a stalled population in the first two days of culture, in which the boost of axon elongation is observed. This correlates with a mutual charge redistribution, observed via Raman spectroscopy and electrophysiological recordings. Furthermore, ultrastructural analysis indicates a reduced microtubule distance and an elongated axonal topology. Thus, both electrophysiological and structural effects can account for graphene action on neuron development. Unraveling the molecular players underneath this interplay may open new avenues for axon regeneration applications

    Busulfan Interlaboratory Proficiency Testing Program Revealed Worldwide Errors in Drug Quantitation and Dose Recommendations

    Get PDF
    Background:The clinical outcomes of busulfan-based conditioning regimens for hematopoietic cell transplantation (HCT) have been improved by personalizing the doses to target narrow busulfan plasma exposure. An interlaboratory proficiency test program for the quantitation, pharmacokinetic modeling, and busulfan dosing in plasma was developed. Previous proficiency rounds (ie, the first 2) found that 67%-85% and 71%-88% of the dose recommendations were inaccurate, respectively.Methods:A proficiency test scheme was developed by the Dutch Foundation for Quality Assessment in Medical Laboratories (SKML) and consisted of 2 rounds per year, with each round containing 2 busulfan samples. In this study, 5 subsequent proficiency tests were evaluated. In each round, the participating laboratories reported their results for 2 proficiency samples (ie, low and high busulfan concentrations) and a theoretical case assessing their pharmacokinetic modeling and dose recommendations. Descriptive statistics were performed, with ±15% for busulfan concentrations and ±10% for busulfan plasma exposure. The dose recommendations were deemed accurate.Results:Since January 2020, 41 laboratories have participated in at least 1 round of this proficiency test. Over the 5 rounds, an average of 78% of the busulfan concentrations were accurate. Area under the concentration-time curve calculations were accurate in 75%-80% of the cases, whereas only 60%-69% of the dose recommendations were accurate. Compared with the first 2 proficiency test rounds (PMID 33675302, October, 2021), the busulfan quantitation results were similar, but the dose recommendations worsened. Some laboratories repeatedly submit results that deviated by more than 15% from the reference values.Conclusions:The proficiency test showed persistent inaccuracies in busulfan quantitation, pharmacokinetic modeling, and dose recommendations. Additional educational efforts have yet to be implemented; regulatory efforts seem to be needed. The use of specialized busulfan pharmacokinetic laboratories or a sufficient performance in busulfan proficiency tests should be required for HCT centers that prescribe busulfan

    Middle-up quantification of therapeutic monoclonal antibodies in human plasma with two dimensional liquid chromatography high resolution mass spectrometry: Adalimumab as a proof of principle

    Get PDF
    Next generation human therapeutic monoclonal antibodies (t-mAbs) are harder to quantify with the widely used bottom-up tryptic digestion method. Due to their homology with endogenous immunoglobulins, there is a lack of unique and stable 'signature' peptides that can be targeted. Middle-up two dimensional liquid chromatography high resolution mass spectrometry (2D-LC-HRMS), targeting the entire light chain, was examined as an alternative. Adalimumab (ADM) was successfully quantified in human plasma after MelonÂź Gel sample purification, followed by orthogonal separation on a weak cation exchange (WCX) and reversed phase column. Charge and hydrophobicity were used to separate ADM from the polyclonal immunoglobulin background. HRMS with its high resolution and exact mass was able to isotopically resolve the ADM light chain and to provide another separation dimension on the basis of mass to charge ratio. Using the targeted single ion monitoring (T-SIM) with multiplex (MSX) option, three ADM light chain precursors, 2341.80, 2129.00, and 1951.68 m/z, and one internal standard precursor 2146.39 m/z, were measured simultaneously. The MelonÂź Gel sample purification was found to be very efficient in removing plasma proteins that would otherwise interfere with chromatographic separation and ionization. The linearity of the method for the analysis of ADM was excellent (R2=0.999) between 1 - 128 mg/L with an LLOQ signal to noise ratio (S/N) of 10. Within-run and between-run precision and accuracy were in concordance with the EMA guideline. Cross-validation of the 2D-LC-HRM method with the standard peptide LC-MS/MS method showed a good agreement (R2 = 0.86) between the methods. However, there was a bias present, possibly due to charge variant ADM formation over time. Since the presented 2D-LC-HRMS method is able to measure only the native form of ADM, it is able to provide a measure of the active form of ADM in patients

    Self-consistent Overhauser model for the pair distribution function of an electron gas in dimensionalities D=3 and D=2

    Full text link
    We present self-consistent calculations of the spin-averaged pair distribution function g(r)g(r) for a homogeneous electron gas in the paramagnetic state in both three and two dimensions, based on an extension of a model that was originally proposed by A. W. Overhauser [Can. J. Phys. {\bf 73}, 683 (1995)] and further evaluated by P. Gori-Giorgi and J. P. Perdew [Phys. Rev. B {\bf 64}, 155102 (2001)]. The model involves the solution of a two-electron scattering problem via an effective Coulombic potential, that we determine within a self-consistent Hartree approximation. We find numerical results for g(r)g(r) that are in excellent agreement with Quantum Monte Carlo data at low and intermediate coupling strength rsr_s, extending up to rs≈10r_s\approx 10 in dimensionality D=3. However, the Hartree approximation does not properly account for the emergence of a first-neighbor peak at stronger coupling, such as at rs=5r_s=5 in D=2, and has limited accuracy in regard to the spin-resolved components g↑↑(r)g_{\uparrow\uparrow}(r) and g↑↓(r)g_{\uparrow\downarrow}(r). We also report calculations of the electron-electron s-wave scattering length, to test an analytical expression proposed by Overhauser in D=3 and to present new results in D=2 at moderate coupling strength. Finally, we indicate how this approach can be extended to evaluate the pair distribution functions in inhomogeneous electron systems and hence to obtain improved exchange-correlation energy functionals.Comment: 14 pages, 7 figuers, to apear in Physical Review

    Multimodality and ambient intelligence

    Get PDF
    In this report we discuss multimodal interface technology. We present examples of multimodal interfaces and show problems and opportunities. Fusion of modalities is discussed and some roadmap discussions on research in Multimodality are summarized. This report also discusses future developments where rather than communicating with a single computer, users communicate with their environment using multimodal interactions and where the environmental interface has perceptual competence that includes being able to interpret what is going on in the environment. We contribute roles to virtual humans in order to allow daily users of future computing environments to establish relationships with the environments, or more in particular, these virtual humans

    A generic sample preparation method for the multiplex analysis of seven therapeutic monoclonal antibodies in human plasma or serum with liquid chromatography-tandem mass spectrometry

    Get PDF
    Due to the increasing number of therapeutic monoclonal antibodies (mAbs) used in the clinic, there is an increasing need for robust analytical methods to quantify total mAb concentrations in human plasma for clinical studies and therapeutic drug monitoring. We developed an easy, rapid, and robust sample preparation method for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The method was validated for infliximab (IFX), rituximab (RTX), cetuximab (CTX), dupilumab (DPL), dinutuximab (DNX), vedolizumab (VDZ), and emicizumab (EMZ). Saturated ammonium sulfate (AS) was used to precipitate immunoglobulins in human plasma. After centrifugation, supernatant containing albumin was decanted, and the precipitated immunoglobulin fraction was re-dissolved in buffer containing 6M guanidine. This fraction was then completely denatured, reduced, alkylated, and trypsin digested. Finally, signature peptides from the seven mAbs were simultaneously quantified on LC-MS/MS together with their internal standards stable isotopically labeled peptide counterparts. The linear dynamic ranges (1 - 512 mg/L) of IFX, CTX, RTX, and EMZ showed excellent (R2 > 0.999) linearity and those of DPL, DNX, and VDZ showed good (R2 > 0.995) linearity. The method was validated in accordance with the EMA guidelines. EDTA plasma, sodium citrate plasma, heparin plasma, and serum yielded similar results. Prepared samples were stable at room temperature (20°C) and at 5°C for 3 days, and showed no decline in concentration for all tested mAbs. This described method, which has the advantage of an easy, rapid, and robust pre-analytical sample preparation, can be used as a template to quantify other mAbs in human plasma or serum

    Adherence to low-dose methotrexate in children with juvenile idiopathic arthritis using a sensitive methotrexate assay

    Get PDF
    BACKGROUND: Low-dose weekly methotrexate (MTX) is the mainstay of treatment in juvenile idiopathic arthritis. Unfortunately, a substantial part of patients has insufficient efficacy of MTX. A potential cause of this inadequate response is suboptimal drug adherence. The aim of this study was to assess MTX adherence in juvenile idiopathic arthritis patients by quantification of MTX concentrations in plasma. Secondly, the association between MTX concentrations and either self-reported adherence issues, or concomitant use of biologics was examined. METHODS: This was a retrospective, observational study using plasma samples from juvenile idiopathic arthritis patients. An ultrasensitive liquid chromatography-tandem mass spectrometry method was developed for quantification of MTX and its metabolite 7-hydroxy-MTX in plasma. The determined MTX plasma concentrations in juvenile idiopathic arthritis patients were compared with corresponding adherence limits, categorising them as either adherent or possibly non-adherent to MTX therapy. RESULTS: Plasma samples of 43 patients with juvenile idiopathic arthritis were analysed. Adherence to MTX in this population was 88% shortly after initiation of MTX therapy and decreased to 77% after one year of treatment. Teenagers were more at risk for non-adherence (p = 0.002). We could not find an association between MTX adherence with either self-reported adherence issues, nor with the use of concomitant biological treatment (p = 1.00 and p = 0.27, respectively; Fisher's Exact). CONCLUSIONS: Quantification of MTX in plasma is a feasible and objective method to assess adherence in patients using low-dose weekly MTX. In clinical practice, the use of this method could be a helpful tool for physicians to refute or support suspicion of non-adherence to MTX therapy

    Optimization of a Quantitative Anti-Drug Antibodies against Infliximab Assay with the Liquid Chromatography-Tandem Mass Spectrometry: A Method Validation Study and Future Perspectives

    Get PDF
    Monoclonal antibodies (mAbs), such as infliximab, are important treatment options for different diseases. Immunogenicity is a major risk, resulting in anti-drug antibodies (ADAs), being associated with adverse events and loss of response, influencing long-term outcomes. The development of ADAs against infliximab is primarily measured by immunoassays like radioimmunoassay (RIA). Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is increasingly utilized across different fields, this technique is currently not used for ADAs against infliximab measurements. Therefore, we developed the first LC-MS/MS method. Stable isotopically labeled infliximab antigen-binding fragments (SIL IFX F(ab')2) were used to bind and measure ADAs indirectly. Protein A magnetic beads were used to capture IgG, including ADAs, whereafter SIL IFX F(ab')2 was added for labeling. After washing, internal standard addition, elution, denaturation and digestion samples were measured by LC-MS/MS. Internal validation showed good linearity between 0.1 and 16 mg/L (R2 > 0.998). Sixty samples were used for cross-validation with RIA, and no significant difference between ADA concentrations was found. The methods had high correlation (R = 0.94, p < 0.001) and excellent agreement, intraclass correlation coefficient = 0.912 (95% confidence interval 0.858-0.947, p < 0.001). We present the first ADA against the infliximab LC-MS/MS method. The method is amendable for quantifying other ADAs, making it applicable as a template for future ADA methods

    Internet of Things in Sustainable Energy Systems

    Get PDF
    Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy systems approaches, methodologies, scenarios, and tools is presented with a detailed discussion of different sensing and communications techniques. This IoT approach in energy systems is envisioned to enhance the bidirectional interchange of network services in grid by using Internet of Things in grid that will result in enhanced system resilience, reliable data flow, and connectivity optimization. Moreover, the sustainable energy IoT research challenges and innovation opportunities are also discussed to address the complex energy needs of our community and promote a strong energy sector economy
    • 

    corecore