287 research outputs found

    Classification of coronary artery bifurcation lesions and treatments: Time for a consensus!

    Get PDF
    Background: Percutaneous coronary intervention (PCI) of coronary bifurcation lesions remains a subject of debate. Many studies have been published in this setting. They are often small scale and display methodological flaws and other shortcomings such as inaccurate designation of lesions, heterogeneity, and inadequate description of techniques implemented. Methods: The aim is to propose a consensus established by the European Bifurcation Club (EBC), on the definition and classification of bifurcation lesions and treatments implemented with the purpose of allowing comparisons between techniques in various anatomical and clinical settings. Results: A bifurcation lesion is a coronary artery narrowing occurring adjacent to, and/or involving, the origin of a significant side branch. The simple lesion classification proposed by Medina has been adopted. To analyze the outcomes of different techniques by intention to treat, it is necessary to clearly define which vessel is the distal main branch and which is (are) the side branche(s) and give each branch a distinct name. Each segment of the bifurcation has been named following the same pattern as the Medina classification. The classification of the techniques (MADS: Main, Across, Distal, Side) is based on the manner in which the first stent has been implanted. A visual presentation of PCI techniques and devices used should allow the development of a software describing quickly and accurately the procedure performed. Conclusion: The EBC proposes a new classification of bifurcation lesions and their treatments to permit accurate comparisons of well described techniques in homogeneous lesion groups. © 2008 Wiley-Liss, Inc

    New approaches for the assessment of vessel sizes in quantitative (cardio-)vascular X-ray analysis

    Get PDF
    This paper presents new approaches for the assessment of the arterial and reference diameters in (cardio-)vascular X-ray images, designed to overcome the problems experienced in conventional quantitative coronary and vascular angiography approaches. In single or “straight” vessel segments, the arterial and reference diameter directions were made independent of each other in order to be able to measure the minimal lumen diameter (MLD) more accurately, especially in curved vessel segments. For ostial segments, an extension of this approach was used, to allow measurement of ostial lesions in sidebranches more proximal than using conventional methods. Furthermore, two new bifurcation approaches were developed. The validation study shows that the straight segment approach results in significant smaller MLDs (on average 0.032 mm) and the ostial approach achieves on average an increase in %DS of 3.8% and an increase in lesion length of 0.59 mm due to loosening the directional constraint. The validation of our new bifurcation approaches in phantom data as well as clinical data shows only small differences between pre- and post-intervention measurements of the reference diameters outside the bifurcation core (errors smaller than 0.06 mm) and the bifurcation core area (errors smaller than 1.4% for phantom data). In summary, these new approaches have led to further improvements in the quantitative analyses of (cardio-)vascular X-ray angiographies

    Free Brick1 Is a Trimeric Precursor in the Assembly of a Functional Wave Complex

    Get PDF
    Background: The Wave complex activates the Arp2/3 complex, inducing actin polymerization in lamellipodia and membrane ruffles. The Wave complex is composed of five subunits, the smallest of which, Brick1/Hspc300 (Brk1), is the least characterized. We previously reported that, unlike the other subunits, Brk1 also exists as a free form. Principal Findings: Here we report that this free form of Brk1 is composed of homotrimers. Using a novel assay in which purified free Brk1 is electroporated into HeLa cells, we were able to follow its biochemical fate in cells and to show that free Brk1 becomes incorporated into the Wave complex. Importantly, incorporation of free Brk1 into the Wave complex was blocked upon inhibition of protein synthesis and incorporated Brk1 was found to associate preferentially with neosynthesized subunits. Brk1 depleted HeLa cells were found to bleb, as were Nap1, Wave2 or ARPC2 depleted cells, suggesting that this blebbing phenotype of Brk1 depleted cells is due to an impairment of the Wave complex function rather than a specific function of free Brk1. Blebs of Brk1 depleted cells were emitted at sites where lamellipodia and membrane ruffles were normally emitted. In Brk1 depleted cells, the electroporation of free Brk1 was sufficient to restore Wave complex assembly and to rescue the blebbing phenotype. Conclusion: Together these results establish that the free form of Brk1 is an essential precursor in the assembly of
    corecore