7 research outputs found

    Reflexion M\"ossbauer analysis of the in situ oxidation products hydroxycarbonate green rust

    Full text link
    The purpose of this study is to determine the nature of the oxidation products of FeII-III hydroxycarbonate FeII4FeIII2(OH)12CO3~3H2O (green rust GR(CO32-)) by using the miniaturised M\"ossbauer spectrometer MIMOS II. Two M\"ossbauer measurements methods are used: method (i) with green rust pastes coated with glycerol and spread into Plexiglas sample holders, and method (ii) with green rust pastes in the same sample holders but introduced into a gas-tight cell with a beryllium window under a continuous nitrogen flow. Method (ii) allows us to follow the continuous deprotonation of GR(CO32-) into the fully ferric deprotonated form FeIII6O4(OH)8CO3~3H2O by adding the correct amount of H2O2, without any further oxidation or degradation of the samples

    Do Gravity-Related Sensory Information Enable the Enhancement of Cortical Proprioceptive Inputs When Planning a Step in Microgravity?

    No full text
    International audienceWe recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90–160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity
    corecore