3,046 research outputs found
Multi-line detection of O_2 toward ρ Ophiuchi A
Context. Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O_2, and water, H_(2)O. These high abundances imply high cooling rates, leading to relatively short timescales for the evolution of gravitationally unstable dense cores, forming stars and planets. Contrary to expectations, the dedicated space missions SWAS and Odin typically found only very small amounts of water vapour and essentially no O_2 in the dense star-forming interstellar medium.
Aims. Only toward ρOph A did Odin detect a very weak line of O_2 at 119 GHz in a beam of size 10 arcmin. The line emission of related molecules changes on angular scales of the order of some tens of arcseconds, requiring a larger telescope aperture such as that of the Herschel Space Observatory to resolve the O2 emission and pinpoint its origin.
Methods. We use the Heterodyne Instrument for the Far Infrared (HIFI) aboard Herschel to obtain high resolution O_2 spectra toward selected positions in the ρOph A core. These data are analysed using standard techniques for O_2 excitation and compared to recent PDR-like chemical cloud models.
Results. The N_J = 3_(3) − 1_(2) line at 487.2 GHz is clearly detected toward all three observed positions in the ρOph A core. In addition, an oversampled map of the 5_(4)−3_(4) transition at 773.8 GHz reveals the detection of the line in only half of the observed area. On the basis of their ratios, the temperature of the O_2 emitting gas appears to vary quite substantially, with warm gas (≳ 50K) being adjacent to a much colder region, of temperatures lower than 30 K.
Conclusions. The exploited models predict that the O_2 column densities are sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these models, the observationally determined O_2 column densities do not seem to depend strongly on the derived gas temperatures, but fall into the range N(O_2) = 3 to ≳ 6 × 10^(15) cm^(-2). Beam-averaged O2 abundances are about 5 × 10^(-8) relative to H_2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz in the range of 4 to 5 arcmin, encompassing the entire ρOph A core. We speculate that one of the reasons for the generally very low detection rate of O2 is the short period of time during which O_2 molecules are reasonably abundant in molecular clouds
Herschel/HIFI spectroscopy of the intermediate mass protostar NGC7129 FIRS 2
Herschel/HIFI observations of water from the intermediate mass protostar NGC 7129 FIRS 2 provide a powerful diagnostic of the physical
conditions in this star formation environment. Six spectral settings, covering four H_2^(16)O and two H_2^(18)O lines, were observed and all but one
H_2^(18)O line were detected. The four H_2
^(16)O lines discussed here share a similar morphology: a narrower, ≈6km s^(−1), component centered slightly
redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, ≈25 km s^(−1) component centered blueward and likely associated
with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate
mass protostar, and the abundance of H_2O is constrained to ≈10^(−7) for the outer envelope. Additionally, the presence of a narrow self-absorption
component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the
H_2O/CO relative abundance is found to be ≈0.2, appears to be tracing the same energetic region that produces strong CO emission at high J
Recommended from our members
Behavioral synthesis from VHDL using structured modeling
This dissertation describes work in behavioral synthesis involving the development of a VHDL Synthesis System VSS which accepts a VHDL behavioral input specification and performs technology independent synthesis to generate a circuit netlist of generic components. The VHDL language is used for input and output descriptions. An intermediate representation which incorporates signal typing and component attributes simplifies compilation and facilitates design optimization.A Structured Modeling methodology has been developed to suggest standard VHDL modeling practices for synthesis. Structured modeling provides recommendations for the use of available VHDL description styles so that optimal designs will be synthesized.A design composed of generic components is synthesized from the input description through a process of Graph Compilation, Graph Criticism, and Design Compilation. Experiments were performed to demonstrate the effects of different modeling styles on the quality of the design produced by VSS. Several alternative VHDL models were examined for each benchmark, illustrating the improvements in design quality achieved when Structured Modeling guidelines were followed
Recommended from our members
Structured modeling for VHDL synthesis
This report will describe a proposed modeling style for the use of the VHSIC Hardware Description Language (VHDL) in design synthesis. We will describe the operations and underlying assumptions of four design models currently understood and used in practice by designers: combinational logic, functional descriptions (involving clocked components such as counters), register transfer (data path) descriptions, and behavioral (instruction set or processor) designs. We will illustrate the various uses of the VHDL description styles (structural, dataflow and behavioral) to represent characteristics of each of these design models. Emphasis is placed on how VHDL constructs should be used in order to synthesize optimal designs
Recommended from our members
VSS : a VHDL synthesis system
This report describes a register transfer synthesis system that allows a designer to interact with the design process. The designer can modify the compiled design by changing the input description, selecting optimization and mapping strategies, or graphically changing the generated design schematic. The VHDL language is used for input and output descriptions. An intermediate representation which incorporates signal typing and component attributes simplifies compilation and facilitates design optimization. The compilation process consists of two phases. First, a design composed of generic components is synthesized from the input description. Second, this design is translated into components from a particular library by a mapper and optimized by a logic optimizer. Redesign to new technologies can be accomplished by changing only the component library
Submillimeter Imaging of NGC 891 with SHARC
The advent of submillimeter wavelength array cameras operating on large
ground-based telescopes is revolutionizing imaging at these wavelengths,
enabling high-resolution submillimeter surveys of dust emission in star-forming
regions and galaxies. Here we present a recent 350 micron image of the edge-on
galaxy NGC 891, which was obtained with the Submillimeter High Angular
Resolution Camera (SHARC) at the Caltech Submillimeter Observatory (CSO). We
find that high resolution submillimeter data is a vital complement to shorter
wavelength satellite data, which enables a reliable separation of the cold dust
component seen at millimeter wavelengths from the warmer component which
dominates the far-infrared (FIR) luminosity.Comment: 4 pages LaTeX, 2 EPS figures, with PASPconf.sty; to appear in
"Astrophysics with Infrared Surveys: A Prelude to SIRTF
- …