2,789 research outputs found
Threshold effects and Planck scale Lorentz violation: combined constraints from high energy astrophysics
Recent work has shown that dispersion relations with Planck scale Lorentz
violation can produce observable effects at energies many orders of magnitude
below the Planck energy M. This opens a window on physics that may reveal
quantum gravity phenomena. It has already constrained the possibility of Planck
scale Lorentz violation, which is suggested by some approaches to quantum
gravity. In this work we carry out a systematic analysis of reaction
thresholds, allowing unequal deformation parameters for different particle
dispersion relations. The thresholds are found to have some unusual properties
compared with standard ones, such as asymmetric momenta for pair creation and
upper thresholds. The results are used together with high energy observational
data to determine combined constraints. We focus on the case of photons and
electrons, using vacuum Cerenkov, photon decay, and photon annihilation
processes to determine order unity constraints on the parameters controlling
O(E/M) Lorentz violation. Interesting constraints for protons (with photons or
pions) are obtained even at O((E/M)^2), using the absence of vacuum Cerenkov
and the observed GZK cutoff for ultra high energy cosmic rays. A strong
Cerenkov limit using atmospheric PeV neutrinos is possible for O(E/M)
deformations provided the rate is high enough. If detected, ultra high energy
cosmological neutrinos might yield limits at or even beyond O((E/M)^2).Comment: 35 pages, 13 Figures, RevTex4. Version published in PRD. Expanded
introduction, updated discussion of possible constraint if GZK cutoff is
confirmed. Corrected typos. Added and updated reference
High energy constraints on Lorentz symmetry violations
Lorentz violation at high energies might lead to non linear dispersion
relations for the fundamental particles. We analyze observational constraints
on these without assuming any a priori equality between the coefficients
determining the amount of Lorentz violation for different particle species. We
focus on constraints from three high energy processes involving photons and
electrons: photon decay, photo-production of electron-positron pairs, and
vacuum Cerenkov radiation. We find that cubic momentum terms in the dispersion
relations are strongly constrained.Comment: 7 pages, 1 figure, Talk presented at CPT01; the Second Meeting on CPT
and Lorentz Symmetry, Bloomington, Indiana, 15-18 Aug. 2001. Minor numerical
error corrected, gamma-decay constraint update
Sonoluminescence and the QED vacuum
In this talk I shall describe an extension of the quantum-vacuum approach to
sonoluminescence proposed several years ago by J.Schwinger. We shall first
consider a model calculation based on Bogolubov coefficients relating the QED
vacuum in the presence of an expanded bubble to that in the presence of a
collapsed bubble. In this way we shall derive an estimate for the spectrum and
total energy emitted. This latter will be shown to be proportional to the
volume of space over which the refractive index changes, as Schwinger
predicted. After this preliminary check we shall deal with the physical
constraints that any viable dynamical model for SL has to satisfy in order to
fit the experimental data. We shall emphasize the importance of the timescale
of the change in refractive index. This discussion will led us to propose a
somewhat different version of dynamical Casimir effect in which the change in
volume of the bubble is no longer the only source for the change in the
refractive index.Comment: 15 pages, 1 figure, uses sprocl.sty. Talk at the 4th Workshop on
Quantum Field Theory Under the Influence of External Conditions, Leipzig,
14-18 September, 199
Naturalness in emergent spacetime
Effective field theories (EFTs) have been widely used as a framework in order
to place constraints on the Planck suppressed Lorentz violations predicted by
various models of quantum gravity. There are however technical problems in the
EFT framework when it comes to ensuring that small Lorentz violations remain
small -- this is the essence of the "naturalness" problem. Herein we present an
"emergent" space-time model, based on the "analogue gravity'' programme, by
investigating a specific condensed-matter system that is in principle capable
of simulating the salient features of an EFT framework with Lorentz violations.
Specifically, we consider the class of two-component BECs subject to
laser-induced transitions between the components, and we show that this model
is an example for Lorentz invariance violation due to ultraviolet physics.
Furthermore our model explicitly avoids the "naturalness problem", and makes
specific suggestions regarding how to construct a physically reasonable quantum
gravity phenomenology.Comment: V1:4 pages, revtex4; V2: slight changes in title, presentation, and
conclusions. This version to appear in Physical Review Letter
Analogue model for quantum gravity phenomenology
So called "analogue models" use condensed matter systems (typically
hydrodynamic) to set up an "effective metric" and to model curved-space quantum
field theory in a physical system where all the microscopic degrees of freedom
are well understood. Known analogue models typically lead to massless minimally
coupled scalar fields. We present an extended "analogue space-time" programme
by investigating a condensed-matter system - in and beyond the hydrodynamic
limit - that is in principle capable of simulating the massive Klein-Gordon
equation in curved spacetime. Since many elementary particles have mass, this
is an essential step in building realistic analogue models, and an essential
first step towards simulating quantum gravity phenomenology. Specifically, we
consider the class of two-component BECs subject to laser-induced transitions
between the components, and we show that this model is an example for Lorentz
invariance violation due to ultraviolet physics. Furthermore our model suggests
constraints on quantum gravity phenomenology in terms of the "naturalness
problem" and "universality issue".Comment: Talk given at 7th Workshop on Quantum Field Theory Under the
Influence of External Conditions (QFEXT 05), Barcelona, Catalonia, Spain, 5-9
Sep 200
Sonoluminescence as a QED vacuum effect: Probing Schwinger's proposal
Several years ago Schwinger proposed a physical mechanism for
sonoluminescence in terms of photon production due to changes in the properties
of the quantum-electrodynamic (QED) vacuum arising from a collapsing dielectric
bubble. This mechanism can be re-phrased in terms of the Casimir effect and has
recently been the subject of considerable controversy. The present paper probes
Schwinger's suggestion in detail: Using the sudden approximation we calculate
Bogolubov coefficients relating the QED vacuum in the presence of the expanded
bubble to that in the presence of the collapsed bubble. In this way we derive
an estimate for the spectrum and total energy emitted. We verify that in the
sudden approximation there is an efficient production of photons, and further
that the main contribution to this dynamic Casimir effect comes from a volume
term, as per Schwinger's original calculation. However, we also demonstrate
that the timescales required to implement Schwinger's original suggestion are
not physically relevant to sonoluminescence. Although Schwinger was correct in
his assertion that changes in the zero-point energy lead to photon production,
nevertheless his original model is not appropriate for sonoluminescence. In
other works (see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018,
quant-ph/9905034) we have developed a variant of Schwinger's model that is
compatible with the physically required timescales.Comment: 18 pages, ReV_TeX 3.2, 9 figures. Major revisions: This document is
now limited to providing a probe of Schwinger's original suggestion for
sonoluminescence. For details on our own variant of Schwinger's ideas see
quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/990503
Reversible and Irreversible Spacetime Thermodynamics for General Brans-Dicke Theories
We derive the equations of motion for Palatini F(R) gravity by applying an
entropy balance law T dS= \delta Q+\delta N to the local Rindler wedge that can
be constructed at each point of spacetime. Unlike previous results for metric
F(R), there is no bulk viscosity term in the irreversible flux \delta N. Both
theories are equivalent to particular cases of Brans-Dicke scalar-tensor
gravity. We show that the thermodynamical approach can be used ab initio also
for this class of gravitational theories and it is able to provide both the
metric and scalar equations of motion. In this case, the presence of an
additional scalar degree of freedom and the requirement for it to be dynamical
naturally imply a separate contribution from the scalar field to the heat flux
\delta Q. Therefore, the gravitational flux previously associated to a bulk
viscosity term in metric F(R) turns out to be actually part of the reversible
thermodynamics. Hence we conjecture that only the shear viscosity associated
with Hartle-Hawking dissipation should be associated with irreversible
thermodynamics.Comment: 12 pages, 1 figure; v2: minor editing to clarify Section III, fixed
typos; v3: fixed typo
A New Approach to Black Hole Microstates
If one encodes the gravitational degrees of freedom in an orthonormal frame
field there is a very natural first order action one can write down (which in
four dimensions is known as the Goldberg action). In this essay we will show
that this action contains a boundary action for certain microscopic degrees of
freedom living at the horizon of a black hole, and argue that these degrees of
freedom hold great promise for explaining the microstates responsible for black
hole entropy, in any number of spacetime dimensions. This approach faces many
interesting challenges, both technical and conceptual.Comment: 6 pages, 0 figures, LaTeX; submitted to Mod. Phys. Lett. A.; this
essay received "honorable mention" from the Gravity Research Foundation, 199
Reply to "Can gravitational dynamics be obtained by diffeomorphism invariance of action?"
In a previous work we showed that, in a suitable setting, one can use
diffeomorphism invariance in order to derive gravitational field equations from
boundary terms of the gravitational action. Standing by our results we reply
here to a recent comment questioning their validity.Comment: Accepted for publication in PR
- …