14 research outputs found

    Cross-Talk Between Body Iron Stores and Diabetes: Iron Stores are Associated with Activity and Microsatellite Polymorphism of the Heme Oxygenase and Type 2 Diabetes

    No full text
    Leiva, E (Leiva, Elba)3; Mujica, V (Mujica, Veronica)3.____ 3. Univ Talca, Dept Clin Biochem & Immunohematol, Fac Hlth Sci, Talca, ChileTo assess the relationship between the length of (GT) (n) repeats in HO-1 gene promoter and heme oxygenase (HO) enzymatic activity in mononuclear cells with iron (Fe) stores in type 2 diabetic mellitus (DM2) patients and metabolic syndrome (MS) subjects, we studied 163 patients with DM2, 185 with MS, and 120 controls subjects. We evaluated iron status (hemoglobin and serum Fe, ferritin, and transferrin receptor), and we determined the length of (GT) (n) repeats in HO-1 gene promoter by capillary electrophoresis and HO enzymatic activity in mononuclear cells and assessed the relationship between these results and Fe stores. Only 1/163, 6/185, and 7/120 had iron deficiency anemia in DM2 patients, MS subjects, and controls, respectively. No iron overload (ferritin > 200 mu g/L) was detected in all the subjects studied. DM2 patients had higher iron deposits, total body iron, and heme oxygenase activity (a suggestion of high oxidative stress condition) than MS subjects and controls. In DM2, we found a positive association between serum iron and HO activity. There were no difference in allelic frequency between the three groups; however, among DM2 and MS patients, the frequency of short/medium (SM) genotype of (GT) (n) repetition was increased and medium/medium (MM) genotype of (GT) (n) repetition was lower than controls. These results imply that DM2 patients and individuals with MS carrying SM repeats might have higher susceptibility to develop diabetes consequences. This increased susceptibility could be Fe-mediated oxidative stress

    Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus

    No full text
    Abstract Use of oleaginous microorganisms as “micro-factories” for accumulation of single cell oils for biofuel production has increased significantly to mitigate growing energy demands, resulting in efforts to upgrade industrial waste, such as second-generation lignocellulosic residues, into potential feedstocks. Dilute-acid pretreatment (DAP) is commonly used to alter the physicochemical properties of lignocellulosic materials and is typically coupled with simultaneous saccharification and fermentation (SSF) for conversion of sugars into ethanol. The resulting DAP residues are usually processed as a waste stream, e.g. burned for power, but this provides minimal value. Alternatively, these wastes can be utilized as feedstock to generate lipids, which can be converted to biofuel. DAP-SSF residues were generated from pine, poplar, and switchgrass. High performance liquid chromatography revealed less than 0.13% monomeric sugars in the dry residue. Fourier transform infrared spectroscopy was indicative of the presence of lignin and polysaccharides. Gel permeation chromatography suggested the bacterial strains preferred molecules with molecular weight ~ 400–500 g/mol. DAP-SSF residues were used as the sole carbon source for lipid production by Rhodococcus opacus DSM 1069 and PD630 in batch fermentations. Depending on the strain of Rhodococcus employed, 9–11 lipids for PD630 and DSM 1069 were observed, at a final concentration of ~ 15 mg/L fatty acid methyl esters (FAME) detected. Though the DAP-SSF substrate resulted in low FAME titers, novel analysis of solid-state fermentations was investigated, which determined that DAP-SSF residues could be a viable feedstock for lipid generation
    corecore