1,412 research outputs found
Control of Glycolytic Flux by AMPK and p53-mediated Signaling Pathways in Tumor Cells Grown at Low pH
Introduction: Tumor cells grow in nutrient and oxygen deprived microenvironments and adapt to the suboptimal growth conditions by altering metabolic pathways. This adaptation process characteristically results in a tumor phenotype that displays upregulated Hif-1α anaerobic glycolysis, chronic acidification, reduced rate of overall protein synthesis, lower rate of cell proliferation and aggressive invasive characteristics. Most transplantable tumors exhibit a pHe of 6.7- 7.0; the DB-1 melanoma xenografts used here have a pHe=6.7. Understanding tumor cell reaction to the microenvironment is a critical factor in predicting the tumor response to radiotherapy. The glucose regulatory molecule, 6-Phosphofructo-2-Kinase/Fructose-2,6- Biphosphatase Isoform-3 (PFKFB3), is a bifunctional enzyme central to glycolytic flux and downstream of the metabolic stress sensor AMP-activated protein kinase (AMPK), which we show activates an isoform of phosphofructokinase (PFK-2).
Radiation Research Society (RRS) 8th Annual Meeting September 25-29, Maui, H
Dynamics of radiating braneworlds
If the observable universe is a braneworld of Randall-Sundrum type, then
particle interactions at high energies will produce 5-dimensional gravitons
that escape into the bulk. As a result, the Weyl energy density on the brane
does not behave like radiation in the early universe, but does so only later,
in the low energy regime. Recently a simple model was proposed to describe this
modification of the Randall-Sundrum cosmology. We investigate the dynamics of
this model, and find the exact solution of the field equations. We use a
dynamical systems approach to analyze global features of the phase space of
solutions.Comment: error in figures corrected, reference adde
Control of Glycolytic Flux by AMPK and p53-Mediated Signaling Pathways in Tumor Cells Adapted to Grow at Low pH
Introduction: Tumor cells grow in nutrient and oxygen deprived microenvironments and adapt to the suboptimal growth conditions by altering metabolic pathways. This adaptation process characteristically results in a tumor phenotype that displays anaerobic glycolysis, chronic acidification and aggressive tumor characteristics. Understanding the tumor cell reaction to the microenvironment is a critical factor in predicting the tumor response to hyperthermia. The glucose regulatory molecule, 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase Isoform-3 (PFKFB3), is a bifunctional enzyme central to glycolytic flux and downstream of the metabolic stress sensor AMP-activated protein kinase (AMPK), which has been shown to activate an isoform of Phosphofructokinase (PFK-2).
Society for Thermal Medicine Annual Meeting April 23-26, Clearwater Beach, FL
Asymmetric radiating brane-world
At high energies on a cosmological brane of Randall-Sundrum type, particle
interactions can produce gravitons that are emitted into the bulk and that can
feed a bulk black hole. We generalize previous investigations of such radiating
brane-worlds by allowing for a breaking of Z_2-symmetry, via different bulk
cosmological constants and different initial black hole masses on either side
of the brane. One of the notable features of asymmetry is a suppression of the
asymptotic level of dark radiation, which means that nucleosynthesis
constraints are easier to satisfy. There are also models where the radiation
escapes to infinity on one or both sides, rather than falling into a black
hole, but these models can have negative energy density on the brane.Comment: sign error in eq. (34) corrected; version to appear Phys. Rev.
Potential for Thermal Enhancement by Quercetin Mediated Mechanisms Targeting p53 Antagonists in Human Melanoma Cells
Introduction: Recently Temozolomide (TMZ) has become the more commonly used analog of DTIC-related oral agents. Although the response rates achieved by TMZ alone are less than satisfactory, there is great interest in identifying compounds that could be used in combination therapy. We have previously demonstrated that the bioflavonoid quercetin (Qct) promotes a p53-mediated response in melanoma and sensitizes melanoma to DTIC. Here we demonstrate that Qct also sensitizes cells to TMZ by a mechanism that involves the modulation of a truncated p53 family member, ΔNp73.
Society for Thermal Medicine Annual Meeting April 23-26, Clearwater Beach, FL
Hot dense capsule implosion cores produced by z-pinch dynamic hohlraum radiation
Hot dense capsule implosions driven by z-pinch x-rays have been measured for
the first time. A ~220 eV dynamic hohlraum imploded 1.7-2.1 mm diameter
gas-filled CH capsules which absorbed up to ~20 kJ of x-rays. Argon tracer atom
spectra were used to measure the Te~ 1keV electron temperature and the ne ~ 1-4
x10^23 cm-3 electron density. Spectra from multiple directions provide core
symmetry estimates. Computer simulations agree well with the peak compression
values of Te, ne, and symmetry, indicating reasonable understanding of the
hohlraum and implosion physics.Comment: submitted to Phys. Rev. Let
The GUCY2C Tumor Suppressor is the Nexus of a Paracrine Hormone Axis Preventing Radiotherapy-Induced Gastrointestinal (GI) Toxicity
Purpose/Objective: Radiation-induced GI toxicity is the primary dose limitation compromising therapy in cancer patients treated with radiation therapy. GUCY2C is the intestinal receptor for diarrheagenic bacterial enterotoxins and the endogenous paracrine hormones guanylin and uroguanylin. Following genomic insult, cyclic (c)GMP produced by ligand activation of GUCY2C enhances DNA damage sensing and repair in intestinal cells. Here, we show that the GUCY2C-cGMP axis mediates p53-dependent radioprotection of intestinal epithelial cells.
American Society for Therapeutic Radiation Oncology (ASTRO) 52nd Annual Meeting October 31 - November 4, San Diego, C
Long-term culture of human breast cancer specimens and their analysis using optical projection tomography
Breast cancer is a leading cause of mortality in the Western world. It is well established that the spread of breast cancer, first locally and later distally, is a major factor in patient prognosis. Experimental systems of breast cancer rely on cell lines usually derived from primary tumours or pleural effusions. Two major obstacles hinder this research: (i) some known sub-types of breast cancers (notably poor prognosis luminal B tumours) are not represented within current line collections; (ii) the influence of the tumour microenvironment is not usually taken into account. We demonstrate a technique to culture primary breast cancer specimens of all sub-types. This is achieved by using three-dimensional (3D) culture system in which small pieces of tumour are embedded in soft rat collagen I cushions. Within 2-3 weeks, the tumour cells spread into the collagen and form various structures similar to those observed in human tumours1. Viable adipocytes, epithelial cells and fibroblasts within the original core were evident on histology. Malignant epithelial cells with squamoid morphology were demonstrated invading into the surrounding collagen. Nuclear pleomorphism was evident within these cells, along with mitotic figures and apoptotic bodies. We have employed Optical Projection Tomography (OPT), a 3D imaging technology, in order to quantify the extent of tumour spread in culture. We have used OPT to measure the bulk volume of the tumour culture, a parameter routinely measured during the neo-adjuvant treatment of breast cancer patients to assess response to drug therapy. Here, we present an opportunity to culture human breast tumours without sub-type bias and quantify the spread of those ex vivo. This method could be used in the future to quantify drug sensitivity in original tumour. This may provide a more predictive model than currently used cell lines.Publisher PDFPeer reviewe
Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells.
A network model for the determination of tumor metabolic fluxes from (13)C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-(13)C2]glucose under normoxic conditions at 37 °C and monitored by (13)C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism
Degeneracy of consistency equations in braneworld inflation
In a Randall-Sundrum type II inflationary scenario we compute perturbation
amplitudes and spectral indices up to next-to-lowest order in the slow-roll
parameters, starting from the well-known lowest-order result for a de Sitter
brane. Using two different prescriptions for the tensor amplitude, we show that
the braneworld consistency equations are not degenerate with respect to the
standard relations and we explore their observational consequences. It is then
shown that, while the degeneracy between high- and low-energy regimes can come
from suitable values of the cosmological observables, exact functional matching
between consistency expressions is plausibly discarded. This result is then
extended to the Gauss-Bonnet case.Comment: 16 pages, 3 figures. v3: major revision. Changed title, updated
references, rearranged material, new prescription for the tensor spectrum,
new figures, extended and more robust conclusion
- …
