979 research outputs found

    Errata for: Differential Equations for Sine-Gordon Correlation Functions at the Free Fermion Point

    Get PDF
    We present some important corrections to our work which appeared in Nucl. Phys. B426 (1994) 534 (hep-th/9402144). Our previous results for the correlation functions eiαΦ(x)eiαΦ(0)\langle e^{i\alpha \Phi(x)} e^{i\alpha' \Phi (0) } \rangle were only valid for α=α\alpha = \alpha', due to the fact that we didn't find the most general solution to the differential equations we derived. Here we present the solution corresponding to αα\alpha \neq \alpha'.Comment: 4 page

    Holographic classification of Topological Insulators and its 8-fold periodicity

    Full text link
    Using generic properties of Clifford algebras in any spatial dimension, we explicitly classify Dirac hamiltonians with zero modes protected by the discrete symmetries of time-reversal, particle-hole symmetry, and chirality. Assuming the boundary states of topological insulators are Dirac fermions, we thereby holographically reproduce the Periodic Table of topological insulators found by Kitaev and Ryu. et. al, without using topological invariants nor K-theory. In addition we find candidate Z_2 topological insulators in classes AI, AII in dimensions 0,4 mod 8 and in classes C, D in dimensions 2,6 mod 8.Comment: 19 pages, 4 Table

    The Scattering Theory of Oscillator Defects in an Optical Fiber

    Full text link
    We examine harmonic oscillator defects coupled to a photon field in the environs of an optical fiber. Using techniques borrowed or extended from the theory of two dimensional quantum fields with boundaries and defects, we are able to compute exactly a number of interesting quantities. We calculate the scattering S-matrices (i.e. the reflection and transmission amplitudes) of the photons off a single defect. We determine using techniques derived from thermodynamic Bethe ansatz (TBA) the thermodynamic potentials of the interacting photon-defect system. And we compute several correlators of physical interest. We find the photon occupancy at finite temperature, the spontaneous emission spectrum from the decay of an excited state, and the correlation functions of the defect degrees of freedom. In an extension of the single defect theory, we find the photonic band structure that arises from a periodic array of harmonic oscillators. In another extension, we examine a continuous array of defects and exactly derive its dispersion relation. With some differences, the spectrum is similar to that found for EM wave propagation in covalent crystals. We then add to this continuum theory isolated defects, so as to obtain a more realistic model of defects embedded in a frequency dependent dielectric medium. We do this both with a single isolated defect and with an array of isolated defects, and so compute how the S-matrices and the band structure change in a dynamic medium.Comment: 32 pages, TeX with harvmac macros, three postscript figure

    On modeling the variability of bedform dimensions

    Get PDF
    ABSTRACT: Bedforms are irregular features that cannot easily be described by mean values. The variations in the geometric dimensions affect the bed roughness, and they are important in the modeling of vertical sorting and in modeling the thickness of cross-strata sets. The authors analyze the variability of bedform dimensions for three sets of flume experiments, considering PDFs of bedform height, trough elevation and crest elevation divided by its mean value. It appears that the dimensionless standard deviation of the bedform height is within a narrow range for nearly all experiments. This appears to be valid for the trough elevation and crest elevation, as well. For some modeling purposes, it seems sufficient to assume that the standard deviation is a constant, so that the variation in bedform dimension can be modeled by only predicting the mean bedform dimension.

    Interacting Bose and Fermi gases in low dimensions and the Riemann hypothesis

    Full text link
    We apply the S-matrix based finite temperature formalism to non-relativistic Bose and Fermi gases in 1+1 and 2+1 dimensions. In the 2+1 dimensional case, the free energy is given in terms of Roger's dilogarithm in a way analagous to the relativistic 1+1 dimensional case. The 1d fermionic case with a quasi-periodic 2-body potential provides a physical framework for understanding the Riemann hypothesis.Comment: version 3: additional appendix explains how the ν\nu to 1ν1-\nu duality of Riemann's ζ(ν)\zeta (\nu) follows from a special modular transformation in a massless relativistic theor

    Semi-Lorentz invariance, unitarity, and critical exponents of symplectic fermion models

    Full text link
    We study a model of N-component complex fermions with a kinetic term that is second order in derivatives. This symplectic fermion model has an Sp(2N) symmetry, which for any N contains an SO(3) subgroup that can be identified with rotational spin of spin-1/2 particles. Since the spin-1/2 representation is not promoted to a representation of the Lorentz group, the model is not fully Lorentz invariant, although it has a relativistic dispersion relation. The hamiltonian is pseudo-hermitian, H^\dagger = C H C, which implies it has a unitary time evolution. Renormalization-group analysis shows the model has a low-energy fixed point that is a fermionic version of the Wilson-Fisher fixed points. The critical exponents are computed to two-loop order. Possible applications to condensed matter physics in 3 space-time dimensions are discussed.Comment: v2: Published version, minor typose correcte

    Stochastics of bedform dimensions

    Get PDF
    Often river dunes are considered as regular bed patterns, with a mean dune height and a mean dune length. In reality however, river dunes are threedimensional and irregular features that cannot be fully described by their mean values. In fact, dune dimensions can be considered as stochastic variables. Their probability distribution can be characterized by a mean value and variance. The stochastic properties of dune dimensions are relevant for (see e.g. Van der Mark et al., 2005):\ud • Shipping - highest crests\ud • Pipelines & cables - deepest troughs\ud • Modelling cross-strata sets - troughs, dune heights\ud • Modelling vertical sorting - troughs\ud • Modelling bed roughness - dune heights\ud In the present research the stochastics of crest elevation, trough elevation and dune height are investigated by analysing three sets of flume experiments

    Elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms

    Get PDF
    The results of a joint experimental and theoretical study concerning elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms are described. These studies demonstrate several important aspects of elastic electron collisions with coherently excited atoms, and are the first such studies. From the measurements, collision and coherence parameters, as well as cross sections associated with an atomic ensemble prepared with an arbitrary in-plane laser geometry and linear polarization (with respect to the collision frame), or equivalently with any magnetic sublevel superposition, have been obtained at 20 eV impact energy and at 10°, 15° and 20° scattering angles. The convergent close-coupling (CCC) method was used within the non-relativistic LS-coupling framework to calculate the magnetic sublevel scattering amplitudes. From these amplitudes all the parameters and cross sections at 20 eV impact energy were extracted in the full angular range in 1° steps. The experimental and theoretical results were found to be in good agreement, indicating that the CCC method can be reliably applied to elastic scattering by 138Ba( ... 6s6p 1P1) atoms, and possibly to other heavy elements when spin-orbit coupling effects are negligible. Small but significant asymmetry was observed in the cross sections for scattering to the left and to the right. It was also found that elastic electron scattering by the initially isotropic atomic ensemble resulted in the creation of significant alignment. As a byproduct of the present studies, elastic scattering cross sections for metastable 138Ba atoms were also obtained

    Witten's Vertex Made Simple

    Full text link
    The infinite matrices in Witten's vertex are easy to diagonalize. It just requires some SL(2,R) lore plus a Watson-Sommerfeld transformation. We calculate the eigenvalues of all Neumann matrices for all scale dimensions s, both for matter and ghosts, including fractional s which we use to regulate the difficult s=0 limit. We find that s=1 eigenfunctions just acquire a p term, and x gets replaced by the midpoint position.Comment: 24 pages, 2 figures, RevTeX style, typos correcte
    corecore