565 research outputs found

    Polarization lightcurves and position angle variation of beamed gamma-ray bursts

    Get PDF
    The recently detected linear polarization in the optical lightcurve of GRB 990510 renewed the interest on how polarization can be produced in gamma-ray burst fireballs. Here we present a model based on the assumption that we are seeing a collimated fireball, observed slightly off-axis. This introduces some degree of anisotropy, and makes it possible to observe a linearly polarized flux even if the magnetic field is completely tangled in the plane orthogonal to the line of sight. We construct the lightcurve of the polarization flux, showing that it is always characterized by two maxima, with the polarization position angle changing by 90 deg. between the first and the second maximum. The very same geometry here assumed implies that the total flux initially decays in time as a power law, but gradually steepens as the bulk Lorentz factor of the fireball decreases.Comment: 5 pages, 4 postscript figures, submitted to MNRAS letter

    Thermal components in the early X-ray afterglow of GRBs

    Get PDF
    The possible presence of thermal components in the early X-ray afterglows of gamma-ray bursts is investigated. We discuss both the presence of a thermal continuum and, in particular, of collisional X-ray emission lines. We compute the predicted luminosity by a thin plasma for a range of metallicities for the continuum and the K_alpha lines of the elements Mg, Si, S, Ar, Ca and Fe. We show that light travel effects are dominant in the determination of the thermal continuum and line luminosities, and derive the relevant equations. We conclude that thermal lines and continua are unlikely to dominate the early afterglow of GRBs, unless the explosion site is surrounded by a very massive and extremely clumped shell of material. Such conditions are difficult to envisage in the close environment of GRB progenitor, unless they are excited by some strong precursor activity, like in the Supranova scenario

    Afterglow lightcurves, viewing angle and the jet structure of gamma-ray bursts

    Full text link
    Gamma ray bursts are often modelled as jet-like outflows directed towards the observer; the cone angle of the jet is then commonly inferred from the time at which there is a steepening in the power-law decay of the afterglow. We consider an alternative model in which the jet has a beam pattern where the luminosity per unit solid angle (and perhaps also the initial Lorentz factor) decreases smoothly away from the axis, rather than having a well-defined cone angle within which the flow is uniform. We show that the break in the afterglow light curve then occurs at a time that depends on the viewing angle. Instead of implying a range of intrinsically different jets - some very narrow, and others with similar power spread over a wider cone - the data on afterglow breaks could be consistent with a standardized jet, viewed from different angles. We discuss the implication of this model for the luminosity function.Comment: Corrected typo in Eq. 1

    X-ray flares from propagation instabilities in long Gamma-Ray Burst jets

    Full text link
    We present a numerical simulation of a gamma-ray burst jet from a long-lasting engine in the core of a 16 solar mass Wolf-Rayet star. The engine is kept active for 6000 s with a luminosity that decays in time as a power-law with index -5/3. Even though there is no short time-scale variability in the injected engine luminosity, we find that the jet's kinetic luminosity outside the progenitor star is characterized by fluctuations with relatively short time scale. We analyze the temporal characteristics of those fluctuations and we find that they are consistent with the properties of observed flares in X-ray afterglows. The peak to continuum flux ratio of the flares in the simulation is consistent with some, but not all, the observed flares. We propose that propagation instabilities, rather than variability in the engine luminosity, are responsible for the X-ray flares with moderate contrast. Strong flares such as the one detected in GRB 050502B, instead, cannot be reproduced by this model and require strong variability in the engine activity.Comment: 6 pages, MNRAS in pres

    Compton dragged gamma-ray bursts: the spectrum

    Get PDF
    We calculate the spectrum resulting from the interaction of a fireball with ambient soft photons. These photons are assumed to be produced by the walls of a funnel in a massive star. By parameterizing the radial dependence of the funnel temperature we calculate the deceleration of the fireball self-consistently, taking into account the absorption of high energy gamma-rays due to interaction with the softer ambient photons. The resulting spectrum is peaked at energies in agreement with observations, has a nu^2 slope in the X-ray band and a steep power-law high energy tail.Comment: 5 pages, 3 figures, accepted for publication in MNRAS, pink page

    Constraints on the bulk Lorentz factor in the internal shock scenario for gamma-ray bursts

    Get PDF
    We investigate, independently of specific emission models, the constraints on the value of the bulk Lorentz factor Gamma of a fireball. We assume that the burst emission comes from internal shocks in a region transparent to Thomson scattering and before deceleration due to the swept up external matter is effective. We consider the role of Compton drag in decelerating fast moving shells before they interact with slower ones, thus limiting the possible differences in bulk Lorentz factor of shells. Tighter constraints on the possible range of Gamma are derived by requiring that the internal shocks transform more than a few per cent of the bulk energy into radiation. Efficient bursts may require a hierarchical scenario, where a shell undergoes multiple interactions with other shells. We conclude that fireballs with average Lorentz factors larger than 1000 are unlikely to give rise to the observed bursts.Comment: 5 pages, 3 figures, accepted for publication in MNRAS, pink page

    Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts

    Full text link
    To test whether the short GRB rates, redshift distribution and host galaxies are consistent with current theoretical predictions, we use avery large database of population synthesis calculations to examine BH-NS and NS-NS merger rates in the universe, factoring in (i) the star formation history of the universe, (ii) a heterogeneous population of star-forming galaxies, including spirals and ellipticals, and (iii) a simple flux-limited selection model for short GRB detection. When we require our models reproduce the known short GRB rates and redshift measurements (and, for NS-NS, the merger rates extrapolated from binary pulsars in the Galaxy), a small fraction of models reproduce all observations, both when we assume a NS-NS and a BH-NS origin for bursts. Most commonly models produce mergers preferentially in spiral galaxies if short GRBs arise from NS-NS mergers alone. Model universes where present-day binary mergers occur preferentially in elliptical galaxies necessarily include a significant fraction of binaries with long delay times between birth and merger (often O(10Gyr)O(10{\rm Gyr})). Though long delays occur, almost all of our models predict that a higher proportion of short GRBs should occur at moderate to high redshift (e.g., z>1z>1) than has presently been observed, in agreement with recent observations which suggest a selection bias towards successful follow-up of low-redshift short GRBs. Finally, if only a fraction of BH-NS mergers have the right combination of masses and spins to make GRBs, then at best only a small fraction of BH-NS models could be consistent with all {\em current} available data. (Abridged)Comment: 14 figures, using bitmapped fonts (via eps2eps) to fit in archive space restrictions; better resolution figures are available from the author. Accepted for publication in ApJ. v3 updates reference
    corecore