74,325 research outputs found

    Re-figuring Federalism: Nation and State in Health Reform's Next Round

    Get PDF
    Reviews the evolution of national healthcare reform movements and the relationship between the federal and state governments, with international comparisons. Outlines differences to be resolved over Medicaid and other programs under a reformed system

    Response to Discussion by A. H. Welsh on the AF 447 Paper

    Full text link
    Response to "Discussion of "Search for the Wreckage of Air France Flight AF 447" by by Lawrence D. Stone, Colleen M. Keller, Thomas M. Kratzke, Johan P. Strumpfer [arXiv:1405.4720]" by A. H. Welsh [arXiv:1405.4991].Comment: Published in at http://dx.doi.org/10.1214/13-STS463 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    In-season prediction of batting averages: A field test of empirical Bayes and Bayes methodologies

    Get PDF
    Batting average is one of the principle performance measures for an individual baseball player. It is natural to statistically model this as a binomial-variable proportion, with a given (observed) number of qualifying attempts (called ``at-bats''), an observed number of successes (``hits'') distributed according to the binomial distribution, and with a true (but unknown) value of pip_i that represents the player's latent ability. This is a common data structure in many statistical applications; and so the methodological study here has implications for such a range of applications. We look at batting records for each Major League player over the course of a single season (2005). The primary focus is on using only the batting records from an earlier part of the season (e.g., the first 3 months) in order to estimate the batter's latent ability, pip_i, and consequently, also to predict their batting-average performance for the remainder of the season. Since we are using a season that has already concluded, we can then validate our estimation performance by comparing the estimated values to the actual values for the remainder of the season. The prediction methods to be investigated are motivated from empirical Bayes and hierarchical Bayes interpretations. A newly proposed nonparametric empirical Bayes procedure performs particularly well in the basic analysis of the full data set, though less well with analyses involving more homogeneous subsets of the data. In those more homogeneous situations better performance is obtained from appropriate versions of more familiar methods. In all situations the poorest performing choice is the na\"{{\i}}ve predictor which directly uses the current average to predict the future average.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS138 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonparametric empirical Bayes and compound decision approaches to estimation of a high-dimensional vector of normal means

    Get PDF
    We consider the classical problem of estimating a vector \bolds{\mu}=(\mu_1,...,\mu_n) based on independent observations YiN(μi,1)Y_i\sim N(\mu_i,1), i=1,...,ni=1,...,n. Suppose μi\mu_i, i=1,...,ni=1,...,n are independent realizations from a completely unknown GG. We suggest an easily computed estimator \hat{\bolds{\mu}}, such that the ratio of its risk E(\hat{\bolds{\mu}}-\bolds{\mu})^2 with that of the Bayes procedure approaches 1. A related compound decision result is also obtained. Our asymptotics is of a triangular array; that is, we allow the distribution GG to depend on nn. Thus, our theoretical asymptotic results are also meaningful in situations where the vector \bolds{\mu} is sparse and the proportion of zero coordinates approaches 1. We demonstrate the performance of our estimator in simulations, emphasizing sparse setups. In ``moderately-sparse'' situations, our procedure performs very well compared to known procedures tailored for sparse setups. It also adapts well to nonsparse situations.Comment: Published in at http://dx.doi.org/10.1214/08-AOS630 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    EXTENSION'S RESPONSE TO UNDERSTANDING EVOLVING LIVESTOCK MARKET SIGNALS: IOWA'S EXPERIENCE

    Get PDF
    Livestock Production/Industries, Teaching/Communication/Extension/Profession,

    Statistical properties of the method of regularization with periodic Gaussian reproducing kernel

    Get PDF
    The method of regularization with the Gaussian reproducing kernel is popular in the machine learning literature and successful in many practical applications. In this paper we consider the periodic version of the Gaussian kernel regularization. We show in the white noise model setting, that in function spaces of very smooth functions, such as the infinite-order Sobolev space and the space of analytic functions, the method under consideration is asymptotically minimax; in finite-order Sobolev spaces, the method is rate optimal, and the efficiency in terms of constant when compared with the minimax estimator is reasonably high. The smoothing parameters in the periodic Gaussian regularization can be chosen adaptively without loss of asymptotic efficiency. The results derived in this paper give a partial explanation of the success of the Gaussian reproducing kernel in practice. Simulations are carried out to study the finite sample properties of the periodic Gaussian regularization.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000045

    Robust forward simulations of recurrent hitchhiking

    Get PDF
    Evolutionary forces shape patterns of genetic diversity within populations and contribute to phenotypic variation. In particular, recurrent positive selection has attracted significant interest in both theoretical and empirical studies. However, most existing theoretical models of recurrent positive selection cannot easily incorporate realistic confounding effects such as interference between selected sites, arbitrary selection schemes, and complicated demographic processes. It is possible to quantify the effects of arbitrarily complex evolutionary models by performing forward population genetic simulations, but forward simulations can be computationally prohibitive for large population sizes (>105> 10^5). A common approach for overcoming these computational limitations is rescaling of the most computationally expensive parameters, especially population size. Here, we show that ad hoc approaches to parameter rescaling under the recurrent hitchhiking model do not always provide sufficiently accurate dynamics, potentially skewing patterns of diversity in simulated DNA sequences. We derive an extension of the recurrent hitchhiking model that is appropriate for strong selection in small population sizes, and use it to develop a method for parameter rescaling that provides the best possible computational performance for a given error tolerance. We perform a detailed theoretical analysis of the robustness of rescaling across the parameter space. Finally, we apply our rescaling algorithms to parameters that were previously inferred for Drosophila, and discuss practical considerations such as interference between selected sites
    corecore