74,325 research outputs found
Re-figuring Federalism: Nation and State in Health Reform's Next Round
Reviews the evolution of national healthcare reform movements and the relationship between the federal and state governments, with international comparisons. Outlines differences to be resolved over Medicaid and other programs under a reformed system
Response to Discussion by A. H. Welsh on the AF 447 Paper
Response to "Discussion of "Search for the Wreckage of Air France Flight AF
447" by by Lawrence D. Stone, Colleen M. Keller, Thomas M. Kratzke, Johan P.
Strumpfer [arXiv:1405.4720]" by A. H. Welsh [arXiv:1405.4991].Comment: Published in at http://dx.doi.org/10.1214/13-STS463 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
In-season prediction of batting averages: A field test of empirical Bayes and Bayes methodologies
Batting average is one of the principle performance measures for an
individual baseball player. It is natural to statistically model this as a
binomial-variable proportion, with a given (observed) number of qualifying
attempts (called ``at-bats''), an observed number of successes (``hits'')
distributed according to the binomial distribution, and with a true (but
unknown) value of that represents the player's latent ability. This is a
common data structure in many statistical applications; and so the
methodological study here has implications for such a range of applications. We
look at batting records for each Major League player over the course of a
single season (2005). The primary focus is on using only the batting records
from an earlier part of the season (e.g., the first 3 months) in order to
estimate the batter's latent ability, , and consequently, also to predict
their batting-average performance for the remainder of the season. Since we are
using a season that has already concluded, we can then validate our estimation
performance by comparing the estimated values to the actual values for the
remainder of the season. The prediction methods to be investigated are
motivated from empirical Bayes and hierarchical Bayes interpretations. A newly
proposed nonparametric empirical Bayes procedure performs particularly well in
the basic analysis of the full data set, though less well with analyses
involving more homogeneous subsets of the data. In those more homogeneous
situations better performance is obtained from appropriate versions of more
familiar methods. In all situations the poorest performing choice is the
na\"{{\i}}ve predictor which directly uses the current average to predict the
future average.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS138 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Nonparametric empirical Bayes and compound decision approaches to estimation of a high-dimensional vector of normal means
We consider the classical problem of estimating a vector
\bolds{\mu}=(\mu_1,...,\mu_n) based on independent observations , . Suppose , are independent
realizations from a completely unknown . We suggest an easily computed
estimator \hat{\bolds{\mu}}, such that the ratio of its risk
E(\hat{\bolds{\mu}}-\bolds{\mu})^2 with that of the Bayes procedure
approaches 1. A related compound decision result is also obtained. Our
asymptotics is of a triangular array; that is, we allow the distribution to
depend on . Thus, our theoretical asymptotic results are also meaningful in
situations where the vector \bolds{\mu} is sparse and the proportion of zero
coordinates approaches 1. We demonstrate the performance of our estimator in
simulations, emphasizing sparse setups. In ``moderately-sparse'' situations,
our procedure performs very well compared to known procedures tailored for
sparse setups. It also adapts well to nonsparse situations.Comment: Published in at http://dx.doi.org/10.1214/08-AOS630 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
EXTENSION'S RESPONSE TO UNDERSTANDING EVOLVING LIVESTOCK MARKET SIGNALS: IOWA'S EXPERIENCE
Livestock Production/Industries, Teaching/Communication/Extension/Profession,
Statistical properties of the method of regularization with periodic Gaussian reproducing kernel
The method of regularization with the Gaussian reproducing kernel is popular
in the machine learning literature and successful in many practical
applications.
In this paper we consider the periodic version of the Gaussian kernel
regularization.
We show in the white noise model setting, that in function spaces of very
smooth functions, such as the infinite-order Sobolev space and the space of
analytic functions, the method under consideration is asymptotically minimax;
in finite-order Sobolev spaces, the method is rate optimal, and the efficiency
in terms of constant when compared with the minimax estimator is reasonably
high. The smoothing parameters in the periodic Gaussian regularization can be
chosen adaptively without loss of asymptotic efficiency. The results derived in
this paper give a partial explanation of the success of the
Gaussian reproducing kernel in practice. Simulations are carried out to study
the finite sample properties of the periodic Gaussian regularization.Comment: Published by the Institute of Mathematical Statistics
(http://www.imstat.org) in the Annals of Statistics
(http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000045
Robust forward simulations of recurrent hitchhiking
Evolutionary forces shape patterns of genetic diversity within populations
and contribute to phenotypic variation. In particular, recurrent positive
selection has attracted significant interest in both theoretical and empirical
studies. However, most existing theoretical models of recurrent positive
selection cannot easily incorporate realistic confounding effects such as
interference between selected sites, arbitrary selection schemes, and
complicated demographic processes. It is possible to quantify the effects of
arbitrarily complex evolutionary models by performing forward population
genetic simulations, but forward simulations can be computationally prohibitive
for large population sizes (). A common approach for overcoming these
computational limitations is rescaling of the most computationally expensive
parameters, especially population size. Here, we show that ad hoc approaches to
parameter rescaling under the recurrent hitchhiking model do not always provide
sufficiently accurate dynamics, potentially skewing patterns of diversity in
simulated DNA sequences. We derive an extension of the recurrent hitchhiking
model that is appropriate for strong selection in small population sizes, and
use it to develop a method for parameter rescaling that provides the best
possible computational performance for a given error tolerance. We perform a
detailed theoretical analysis of the robustness of rescaling across the
parameter space. Finally, we apply our rescaling algorithms to parameters that
were previously inferred for Drosophila, and discuss practical considerations
such as interference between selected sites
- …
