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Abstract
The method of regularization with the Gaussian reproducing kernel is popular in the machine learning
literature and successful in many practical applications. In this paper we consider the periodic version of the
Gaussian kernel regularization. We show in the white noise model setting, that in function spaces of very
smooth functions, such as the infinite-order Sobolev space and the space of analytic functions, the method
under consideration is asymptotically minimax; in finite-order Sobolev spaces, the method is rate optimal,
and the efficiency in terms of constant when compared with the minimax estimator is reasonably high. The
smoothing parameters in the periodic Gaussian regularization can be chosen adaptively without loss of
asymptotic efficiency. The results derived in this paper give a partial explanation of the success of the Gaussian
reproducing kernel in practice. Simulations are carried out to study the finite sample properties of the periodic
Gaussian regularization.
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STATISTICAL PROPERTIES OF THE METHOD OF
REGULARIZATION WITH PERIODIC GAUSSIAN

REPRODUCING KERNEL

BY YI LIN1 AND LAWRENCE D. BROWN2

University of Wisconsin, Madison and University of Pennsylvania

The method of regularization with the Gaussian reproducing kernel is
popular in the machine learning literature and successful in many practical
applications. In this paper we consider the periodic version of the Gaussian
kernel regularization. We show in the white noise model setting, that in
function spaces of very smooth functions, such as the infinite-order Sobolev
space and the space of analytic functions, the method under consideration
is asymptotically minimax; in finite-order Sobolev spaces, the method is
rate optimal, and the efficiency in terms of constant when compared with
the minimax estimator is reasonably high. The smoothing parameters in
the periodic Gaussian regularization can be chosen adaptively without loss
of asymptotic efficiency. The results derived in this paper give a partial
explanation of the success of the Gaussian reproducing kernel in practice.
Simulations are carried out to study the finite sample properties of the
periodic Gaussian regularization.

1. Introduction. The method of regularization is a popular approach for
nonparametric function estimation. Letf be the nonparametric function to be
estimated. The method of regularization takes the form

min
f ∈F

[L(f,data) + λJ (f )],(1)

whereL is the empirical loss, often taken to be the negative log-likelihood, and
J (f ) is the penalty functional, usually a quadratic functional corresponding to
a norm or semi-norm of a reproducing kernel Hilbert spaceF . Most often the
penalty functional is chosen so that smoother functions incur smaller penalty. The
smoothing parameterλ controls the tradeoff between minimizing the empirical
loss and obtaining a smooth solution. For a concrete example, let us look at the
regression model

yj = f (xj ) + δj , j = 1, . . . , n,(2)
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1724 Y. LIN AND L. D. BROWN

wherexj ∈ R, j = 1, . . . , n, are the regression inputs,yj ’s are the responses,
andδj ’s are independentN(0,1) noises. In this case we may takeL(f,data) =∑n

j=1(yj − f (xj ))
2 in the method of regularization (1).

The reproducing kernel Hilbert spaceF is typically of infinite dimension. In
many situations, including regression and generalized regression, when the penalty
functionalJ (f ) is a norm overF , the representer theorem [Kimeldorf and Wahba
(1971)] guarantees that the solution to (1) overF falls in the finite-dimensional
space spanned by{K(xj , ·), j = 1, . . . , n}, whereK(·, ·) is the reproducing kernel
corresponding toJ (f ). See also Schölkopf, Herbrich and Smola (2001) for some
generalizations of the representer theorem. Therefore, we can write the solution
as f̂ = ∑n

j=1 cjK(xi, x). The minimization problem can then be solved in this
finite-dimensional space.

The smoothing spline well known in the nonparametric statistics literature is an
example of the method of regularization. In the smoothing spline the reproducing
kernel Hilbert spaceF is a Hilbert Sobolev space and the penalty functionalJ (f )

is the norm or semi-norm of the space, such as
∫ [f (m)(x)]2 dx. The commonly

used cubic smoothing spline corresponds to the casem = 2. The reproducing
kernel of the Hilbert Sobolev space was given in Wahba (1990).

The method of regularization has also been popular in the machine learning
literature. Examples include regularization networks andmore recently, support
vector machines. See, for example, Girosi, Jones and Poggio (1993), Smola,
Schölkopf and Müller (1998), Wahba (1999) and Evgeniou, Pontil and Poggio
(2000). One reproducing kernel that is particularly popular in the machine
learning literature is the Gaussian reproducing kernel (commonly referred to as
the Gaussian kernel in the machine learning literature, not to be confused with
the Gaussian kernel used in kernel smoothing in the nonparametric statistics
literature). Let G(r) = (2π)−1/2ω−1 exp(−r2/(2ω2)) be the density function
of N(0,ω2). The Gaussian reproducing kernel has the formG(s, t) ≡ G(s − t).
This is a common example of the translation invariant reproducing kernels popular
in machine learning. It is known [Girosi, Jones and Poggio (1993) and Smola,
Schölkopf and Müller (1998)] that the Gaussian reproducing kernel corresponds
to the penalty functional (up to a constant)

Jg(f ) =
∞∑

m=0

ω2m

2mm!
∫ ∞
−∞

[
f (m)(x)

]2
dx.(3)

Smola, Schölkopf and Müller (1998) introduced the periodic Gaussian repro-
ducing kernel for estimating 2π -periodic functions in[−π,π ] as the reproducing
kernel corresponding to the penalty functional

J0(f ) =
∞∑

m=0

ω2m

2mm!
∫ π

−π

[
f (m)(x)

]2
dx.(4)
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From (3) and (4) it is clear that the two reproducing kernels are closely related. The
connection between the two reproducing kernels will be clearer when we consider
the computation with the periodic Gaussian reproducing kernel in Section 5.

Many researchers in machine learning have derived upper bounds of the
generalization performance of the method of regularization with the Gaussian
or periodic Gaussian reproducing kernels. See Williamson, Smola and Schölkopf
(2001) and the references therein. However, while popular in the machine learning
literature, and successful in many practical applications, the statistical asymptotic
properties of the method of regularization with the Gaussian or periodic Gaussian
reproducing kernels have not been studied systematically. In this paper we study
the asymptotic properties of the method of regularization with the periodic
Gaussian reproducing kernel in nonparametric function estimation problems and
derive the asymptotic risk (up to constants) of the method of regularization with
the periodic Gaussian reproducing kernel. We choose to work with the periodic
Gaussian reproducing kernel because it allows a detailed asymptotic analysis. We
believe the results obtained in this paper should also give insights on the statistical
properties of the Gaussian reproducing kernel.

Motivated by the equivalence results of Brown and Low (1996) for Gaussian
nonparametric regression and Nussbaum (1996) for density estimation [see also
Golubev and Nussbaum (1998) for spectral density estimation; Grama and
Nussbaum (1997) for nonparametric generalized linear regression], we first look
at the white noise problem

Yn(t) =
∫ t

−π
f (u) du + n−1/2B(t), t ∈ [−π,π ],(5)

whereB(t) is a standard Brownian motion on[−π,π ] and we observeYn =
(Yn(t),−π ≤ t ≤ π). We consider the situation where the functionf belongs to a
certain function ellipsoid of the form{

f :f (t) =
∞∑
l=0

θlφl(t),

∞∑
l=0

ρlθ
2
l ≤ Q

}
,(6)

for some positive sequence{ρl, l = 0,1, . . . }. Here{φ0(t) = (2π)−1/2, φ2l−1(t) =
π−1/2 sin(lt), φ2l(t) = π−1/2 cos(lt)} is the classical trigonometric basis in
L2(−π,π) and θl = (f,φl) is the corresponding Fourier coefficient, where
(f,φ) = ∫ π

−π f (t)φ(t) dt denotes the usual inner product inL2(−π,π).
The commonly considered Sobolev ellipsoidHm(Q) corresponds to the

sequenceρ0 = 1, ρ2l−1 = ρ2l = l2m + 1 in (6). This is themth order Sobolev
space of periodic functions on[−π,π ]. An alternative definition ofHm(Q) is

Hm(Q) =
{
f ∈ L2(−π,π) :f is 2π -periodic,

(7) ∫ π

−π
[f (t)]2 + [

f (m)(t)
]2

dt ≤ Q

}
.
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Therefore, themth order Sobolev space consists of functions that possessmth
order smoothness. The order of smoothness is determined by the rate at which
the sequence ofρ ’s increases. In the Sobolev space case the rate is of polynomial
order.

Another function space that has been considered in the literature is the space
of analytic functions. An ellipsoid of analytic functionsAα(Q) corresponds to (6)
with the exponentially increasing sequenceρl = exp(αl), whereα is a positive
constant. Such a function space can be motivated by considering the Fourier series
in complex exponentials and considering the domain in which the function is
analytical. For details, see Johnstone (1998). The norm of this function space can
not be expressed in terms of integrals of squared derivatives of integer order.

We now introduce a new function spaceH∞
ω that can be seen as the Sobolev

space of infinite order,

H∞
ω (Q) =

{
f :f (t) =

∞∑
l=0

θlφl(t),

∞∑
l=0

ρlθ
2
l ≤ Q;

(8)

ρ0 = 1, ρ2l−1 = ρ2l = el2ω2/2

}
,

whereω is a positive constant, andφ’s are the classical trigonometric basis over
(−π,π). Simple calculation shows that an equivalent definition ofH∞

ω (Q) is

H∞
ω (Q) =

{
f ∈ L2(−π,π) :f is 2π -periodic,

∞∑
m=0

ω2m

m!2m

∫ π

−π

[
f (m)(x)

]2
dx ≤ Q

}
.

From this we can see thatH∞
ω can be seen as the Sobolev space of infinite order,

and that the penalty functionalJ0 of the periodic Gaussian reproducing kernel as
defined in (4) corresponds to the norm ofH∞

ω (Q).
In this paper we focus on the method of regularization with the periodic

Gaussian penalty (4). We will refer to this method as periodic Gaussian regular-
ization. We study the statistical properties of this method both in the situation that
f ∈ H∞

ω and the situationf /∈ H∞
ω .

By converting the functions into the corresponding sequence of Fourier
coefficients, we can see that the white noise problem (5) is equivalent to the
following Gaussian sequence model:

yl = θl + εl, l = 0,1, . . . ,(9)

where theεl ’s are independentN(0,1/n) noises and theθl ’s are the Fourier
coefficients off . The periodic Gaussian regularization corresponds to

min
∞∑
l=0

(yl − θl)
2 + λ

∞∑
l=0

βlθ
2
l(10)
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with βl = el2ω2/2.
In Section 2 we establish the asymptotic minimax risk (up to the constant) of

nonparametric problems in the spaceH∞
ω (Q), and show that the periodic Gaussian

regularization achieves this optimal asymptotic risk. In Section 3 we study the
asymptotic performance of the periodic Gaussian regularization in the situation
where the underlying function to be estimated is in the Sobolev ellipsoidHm(Q)

with unknownm andQ, or in the analytic function ellipsoidAα(Q) with unknown
α and Q. We show that the method under study is asymptotically minimax in
analytic function ellipsoids. For Sobolev ellipsoidsHm(Q), the periodic Gaussian
regularization achieves the optimal rate of convergence, and the efficiency in terms
of the constant is reasonably high, tending to 1 asm goes to infinity.

In Section 4 we consider choosing the smoothing parameters with the unbiased
estimator of risk. The procedure is the well known Mallows’Cp [Mallows (1973)],
sometimes called Mallows’CL in the literature. Li (1986, 1987) established the
asymptotic optimality ofCp in many nonparametric function estimation methods,
including the method of regularization. Kneip (1994) obtained oracle inequalities
for choosing smoothing parameters withCp in ordered linear smoothers. See also
Cavalier, Golubev, Picard and Tsybakov (2002). These results can be used to study
the periodic Gaussian regularization with smoothing parameters chosen by the
unbiased risk estimator. We show that the resulting data-driven method retains
the good theoretical properties of the periodic Gaussian regularization established
in Sections 2 and 3. Thus, adaptive estimation is achieved for unknown order of
smoothness by the periodic Gaussian regularization in the white noise model.

Due to the equivalence between the white noise model and other statistical
models, we expect the periodic Gaussian regularization to have good statistical
properties in other situations such as regression and generalized regression. In
fact, the equivalence results in Brown and Low (1996) show that the asymptotic
results we obtained in Sections 2–4 for the white noise model apply to the periodic
Gaussian regularization in the regression problem (2) with fixed equidistant
design. In regression problems with nonequidistant design, the periodic Gaussian
regularization in regression does not match up exactly with the periodic Gaussian
regularization in the white noise model, and therefore our results do not translate
directly. However, we believe the results in the white noise model still give insights
to the regression problem with general design. In this connection, see Brown and
Zhao (2002).

In Section 5 we consider the computation of the periodic Gaussian regular-
ization in regression. The computation does not require equidistant design. Some
simulations are given in Section 6 to study the finite sample properties of the
periodic Gaussian regularization. In particular, the effect of the joint tuning of
the smoothing parameters is studied, and the periodic Gaussian regularization is
compared with the periodic cubic smoothing spline on four functions of different
orders of smoothness. The simulation suggests that the finite sample performance
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of the periodic Gaussian regularization is comparable to that of the periodic cubic
smoothing spline when the regression function is of moderate smoothness. In the
case of a very smooth function, the periodic Gaussian regularization may have an
advantage. Summary and discussion are given in Section 7. Technical proofs are
relegated to Section 8.

Throughout this paper the expressionan ∼ bn means thatan/bn → 1 asn → ∞.

2. Estimation in the Sobolev space of infinite order. In this section we
consider the white noise problem inH∞

ω (Q).

THEOREM 1. The asymptotic minimax risk for nonparametric function esti-
mation in the infinite-order Sobolev ellipsoid H∞

ω (Q) is 2
√

2ω−1n−1(logn)1/2.
That is,

inf
θ̄

sup
θ∈H∞

ω (Q)

∞∑
l=0

E(θ̄i − θi)
2 ∼ 2

√
2ω−1n−1(logn)1/2,

where the infimum is over all possible estimators θ̄ .

Notice this asymptotic minimax risk does not depend onQ, but depends onω.
In the following we consider the periodic Gaussian regularization. The follow-

ing lemma will be used several times in later proofs.

LEMMA 1. Consider the periodic Gaussian regularization (10) in the
white noise model. Denote the estimator by θ̂ . We have

∑
varθ̂ ∼ 2

√
2ω−1n−1 ×

(− logλ)1/2, as n → ∞ and λ(n) → 0.

THEOREM 2. The periodic Gaussian regularization (10) in the white noise
model is asymptotically minimax in the infinite-order Sobolev ellipsoid H∞

ω (Q), if
the smoothing parameter λ satisfies

log(1/λ) ∼ logn and λ = o
(
n−1(logn)1/2).(11)

That is,

inf
λ

sup
θ∈H∞

ω (Q)

∞∑
l=0

E(θ̂i − θi)
2 ∼ 2

√
2ω−1n−1(logn)1/2,

and this asymptotic risk is achieved when (11) is satisfied. Here θ̂ is the method of
regularization estimator from (10) with βl = el2ω2/2.

The condition (11) is satisfied ifnλn is bounded away from zero and infinity,
but is milder. For example, it is satisfied by sequencesλn = Cn−1(logn)α for any
constantsC > 0 and−∞ < α < 1/2. The adaptive choice ofλ is considered in
Section 4.
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3. Estimation over Sobolev spaces and spaces of analytic functions. In this
section we consider the performance of the periodic Gaussian regularization when
the functionf to be estimated in the white noise problem belongs to a Sobolev
body Hm(Q) with unknownm andQ, or an analytic function ellipsoidAα(Q)

with unknownα andQ. In these cases the function to be estimated does not lie in
the function space used in the method of regularization.

THEOREM 3. Assume f ∈ Hm(Q) with m ≥ 1 in the white noise model (5).
Consider the periodic Gaussian regularization estimator θ̂ (10)with β2l−1 = β2l =
exp(l2ω2/2). We have

inf
λ

sup
θ∈Hm(Q)

∑
l

E(θ̂l − θl)
2 ∼ (2m + 1)m−2m/(2m+1)Q1/(2m+1)n−2m/(2m+1).

This asymptotic risk is achieved when log(1/λ)/ω2 ∼ (mnQ)2/(2m+1)/2.

REMARK 1. The conclusion of Theorem 3 holds for nonintegerm > 1.

For the ellipsoidAα(Q) of analytic functions, we have the following:

THEOREM4. Assume f ∈ Aα(Q) in the white noise problem (5).Consider the
periodic Gaussian regularization estimator θ̂ from (10)with β2l−1 = β2l = el2ω2/2.
We have

inf
λ

sup
θ∈Aα(Q)

∑
l

E(θ̂l − θl)
2 ∼ 2n−1α−1 logn.

This asymptotic risk is achieved when log(1/λ)/ω2 = (logn)2/(2α2).

The proof of this theorem is similar to that of Theorem 3, withρl = eαl, and is
skipped. It is known that the asymptotic minimax risk inAα(Q) is 2n−1α−1 logn;
see Johnstone (1998). Therefore, Theorem 4 says that the periodic Gaussian
regularization is asymptotically minimax inAα(Q).

We can study the asymptotic efficiency of the periodic Gaussian regularization
compared with the minimax estimator for nonparametric problems inHm(Q). We
consider the maximum asymptotic risk overHm(Q). We compare the minimum
of such asymptotic risk achieved by the periodic Gaussian regularization with the
minimax risk overHm(Q). This indicates how close to the minimax value one can
get with the periodic Gaussian regularization. A similar study had been carried out
by Carter, Eagleson and Silverman (1992), who studied the efficiency of the cubic
smoothing spline in the second-order Sobolev space.

It is well known that the asymptotic minimax risk overHm(Q) is

[2m/(m + 1)]2m/(2m+1)(2m + 1)1/(2m+1)Q1/(2m+1)n−2m/(2m+1).
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FIG. 1. The efficiency of the periodic Gaussian regularization method.

This can be derived with an argument along the line of the proof of Theorem 1.
Figure 1, left panel, gives the ratio between the asymptotic risk of the periodic
Gaussian regularization and the minimax risk when the sample sizen is kept
to be the same. The right panel gives the efficiency of the periodic Gaussian
regularization. The efficiency is calculated in terms of sample sizes needed to
achieve the same risk. We can see that the efficiency goes to one when the function
is very smooth. The lowest efficiency occurs whenm = 1, and the lowest efficiency
is 33.3%. The efficiency whenm = 2 is 53.3%.

4. Adaptive choice of the smoothing parameter. In the earlier sections
we studied the performance of the periodic Gaussian regularization when the
smoothing parameterλ has an appropriate rate of decrease. This appropriate rate
depends onm (or α or ω) andQ, which are generally unknown in practice. In this
section we consider the problem of choosing the smoothing parameter with data.
We study the common approach of choosing the smoothing parameter through the
unbiased estimator of risk (Mallows’Cp). By making use of the oracle inequalities
developed in Kneip (1994) [see also Cavalier, Golubev, Picard and Tsybakov
(2002)], we show that the estimator chosen by the unbiased estimator of risk has
the same asymptotic risk as the estimator with the optimal (theoretical) smoothing
parameter. Thus, no asymptotic efficiency is lost due to not knowingm, Q andω.

The numberω appears in the asymptotic risk of the periodic Gaussian
regularization estimator in the function spaceH∞

ω (Q), but does not play an
important role in the asymptotic risk in the function spaceHm(Q), so long as
λ is suitably chosen. From (22) in the proof of Theorem 3 we can see that the
leading terms in the asymptotic risk inHm(Q) depend onω andλ only through
− logλ/ω2. The asymptotic results suggest that tuning one ofλ andω may suffice.
For finite sample size, though, it may pay to tuneω as well asλ. Usually there is
a range ofω that works almost equally well ifλ is tuned correspondingly and vice
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versa. See the simulation in Section 6 for examples. Thus, we consider a rough
tuning forω, just to get to a reasonable range, and a fine tuning overλ.

Formally, we take a finite number ofω’s: ω1, . . . ,ωS , and tuneλ andω jointly
overλ andωs ∈ {ω1, . . . ,ωS}. For asymptotic consideration, a range of[0,1] for λ

suffices, since asymptoticallyλ should go to zero. In practice we may use a slightly
larger range.

The tuning is based on the unbiased estimator of risk. Writing

τl = (1+ λβl)
−1,

our estimator is

θ̂l = τlyl.

We can express the risk of our estimator as

∑
l

E(θ̂l − θl)
2 = (1/n)

∞∑
l=0

τ2
l +

∞∑
l=0

(1− τl)
2θ2

l .

Now an unbiased estimator forθ2
l is y2

l − (1/n). Plugging in, we get that

∞∑
l=0

[(τ2
l − 2τl)(y

2
l − 1/n) + (1/n)τ2

l ] =
∞∑
l=0

[(τ2
l − 2τl)y

2
l + (2/n)τl](12)

is an unbiased estimator of
∑

l E(θ̂l − θl)
2 − ∑

θ2
l . We chooseλ∗ andω∗ that

minimize the unbiased risk (12), and use the corresponding periodic Gaussian
regularization estimator̂θ∗. Kneip (1994) studied the adaptive choice among
ordered linear smoothers with the unbiased risk estimator. A family of ordered
linear smoothers satisfies the condition that for any memberθ̂l = τlyl , l = 0,1, . . . ,
of the family, we haveτl ∈ [0,1] ∀ l; and for any two members of the family,τlyl

andτ ′
l yl , l = 0,1, . . . , we have eitherτl ≥ τ ′

l ∀ l, or τ ′
l ≥ τl ∀ l. It is easy to check

that for any fixedω ∈ {ω1, . . . ,ωS}, the method of regularization estimators with
varyingλ form a family of ordered linear smoothers. Applying the result in Kneip
(1994) [recast in the Gaussian sequence model setting in Cavalier, Golubev, Picard
and Tsybakov (2002)] to our situation gives the following:

LEMMA 2. Consider the Gaussian sequence model (9) and the periodic
Gaussian regularization (10).Suppose λ∗ and ω∗ minimize (12)over λ ∈ [0,1] and
ω ∈ {ω1, . . . ,ωS}, and θ̂∗ is the corresponding periodic Gaussian regularization
estimator. Then there exist positive constants C1 and C2 such that for any θ ∈ l2

and any positive constant B, we have

∑
l

E(θ̂∗
l − θl)

2 ≤ (1+ C1B
−1)min

λ,ωs

{∑
l

E(θ̂l − θl)
2

}
+ n−1C2B.(13)

We then have the following:
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THEOREM 5. For the periodic Gaussian regularization estimator θ̂∗ chosen
by the unbiased estimator of risk, we have

sup
θ∈H∞

ωs
(Q)

∑
l

E(θ̂∗
l − θl)

2 ∼ 2
√

2ω−1
s n−1(logn)1/2 ∀ s ∈ {1, . . . , S},

sup
θ∈Hm(Q)

∑
l

E(θ̂∗
l − θl)

2 ∼ (2m + 1)m−2m/(2m+1)Q1/(2m+1)n−2m/(2m+1),

sup
θ∈Aα(Q)

∑
l

E(θ̂∗
l − θl)

2 ∼ 2n−1α−1 logn.

Therefore, the adaptive periodic Gaussian regularization estimatorθ̂∗ is
asymptotically minimax inH∞

ωs
(Q) and Aα(Q), and achieves the optimal rate

in Hm(Q). The asymptotic efficiency is the same as that given in Section 3. Hence,
the estimator adapts to any unknown order of smoothness.

5. Computation of periodic Gaussian regularization in regression. In
order for the periodic Gaussian regularization in regression and generalized
regression to be practically computable, we need the form of the reproducing
kernel corresponding to the penalty functionalJ0(f ), that is, the reproducing
kernel ofH∞

ω . Smola, Schölkopf and Müller (1998) gave the following expression
for the periodic Gaussian reproducing kernel:

R(s, t) = (1/π)

∞∑
l=1

exp(−l2ω2/2)cos
(
l(s − t)

)
.(14)

Due to the fast decay of the sequence exp(−l2ω2/2), it is possible to
approximate the series (14) with finitely many terms. However, an alternative
formula of the kernel (14) is better suited for computation. We first state a lemma
due to Williamson, Smola and Schölkopf (2001).

LEMMA 3. Let V (s − t) be a reproducing kernel with V :R → R being an
even function. Let

Vν(s) =
∞∑

k=−∞
V (s − kµ).

Then

Vν(s − t) =
√

2π

ν
Ṽ (0) +

∞∑
k=1

2

ν

√
2πṼ

(
2kπ

ν

)
cos

2kπ(s − t)

ν
,

where Ṽ is the Fourier transform of V .
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DefineG∞(r) = ∑∞
k=−∞ G(r − 2kπ). It follows directly from Lemma 3 that

G∞(s − t) is the reproducing kernel (14) corresponding to the periodic Gaussian
regularization. The functionG∞ can be approximated with the finite seriesGJ =∑J

k=−J G(s − 2kπ) for someJ . In fact, we have

0< G∞(s) − G1(s) < 2.1× 10−20 ∀ s ∈ [−π,π ] for ω ≤ 1.

For ω > 1, we can choose a positive integerJ such that 2J + 1 ≥ 3ω.
Then 0< G∞(s) − GJ (s) < 10−20 ∀ s ∈ [−π,π ]. Therefore,GJ (s) is an easily
computable proxy ofG∞(s).

Now consider the periodic Gaussian regularization in the regression problem (2)
with the empirical loss being

∑n
j=1(yj − f (xj ))

2. Here we assumexj ∈ (−π,π),
j = 1, . . . , n, and the regression functionf is 2π -periodic. The theory of
reproducing kernel Hilbert spaces guarantees that the solution to the method of
regularization falls in a finite-dimensional space spanned byG∞(xj , ·). That is, we
can writef̂ (x) = ∑n

j=1 ĉjG
∞(xj − x), and the penalized regression (1) becomes

(y − G∞c)′(y − G∞c) + λc′G∞c,

where, with little risk of confusion, we writey = (y1, . . . , yn)
t , c = (c1, . . . , cn)

t ,
and G∞ is the n × n matrix (G∞(xi − xj )). The solution can then be
found to be ĉ = (G∞ + λI)−1y. In order to compute the solution as well
as Mallows’ Cp for tuning the smoothing parameters, we use the eigenvalue–
eigenvector decompositionG∞ = V DV ′, where D is the diagonal matrix of
eigenvalues, andV is the orthonormal matrix of eigenvectors. Let

T = D(D + λI)−1.(15)

Then f̂ = SY , whereS = V T V ′. Mallows’ Cp in this context is‖y − f̂ ‖2/n +
(2/n) tr(S). Notice the computation of the periodic Gaussian regularization in
regression does not require equidistant design.

It is possible to leave the constant term in the regression function unpenalized, as
is commonly done in practice with smoothing splines and Gaussian regularization.
This is equivalent to havingβ0 = 0 in (10), and the asymptotic results do not
change. The penalized regression can be written as

min
f,b

n∑
j=1

(
yj − (

f (xj ) + b
))2 + λJ0(f ).

In this case the theory of reproducing kernel Hilbert spaces dictates that the
solution can be expressed asf̂ = G∞ĉ + b̂e, wheree = (1, . . . ,1)′. In the case of
equidistant sample inputs, we can see thate is an eigenvalue ofG∞, sinceG∞ is
periodic and even. In this case the computation is very similar to the case above
with constants penalized: one simply replaces the diagonal element ofT in (15)
corresponding to the eigenvaluee by 1, and continues the computation with the
newT .
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6. Simulations. We conduct some simulations to study the finite sample
properties of the periodic Gaussian regularization in regression. Consider the
regression problem (2) with the following four functions on[−π,π ]:

f1(x) = sin2(x)1(x≥0),

f2(x) = −x − π + 2(x + π/2)1(x≥−π/2) + 2(−x + π/2)1(x≥π/2),

f3(x) = 1
/(

2− sin(x)
)
,

f4(x) = 2+ sin(x) + 2 cos(x) + 3 sin2(x) + 4 cos3(x) + 5 sin3(x).

The plots of the four functions are given in Figure 2. These are all 2π -periodic
functions. The first function has only the second order of smoothness. The second
function has only the first order of smoothness. The third function is infinitely
smooth. The fourth function is even smoother: its Fourier series only contains
finitely many terms. In all of our simulations the sample size is taken to be 100.
All simulations are done in Matlab.

FIG. 2. The regression functions used in the simulations. The first function has only the second
order of smoothness. The second function has only the first order of smoothness. The third function
is infinitely smooth. The fourth function has a Fourier series that only contains finitely many terms.
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First we study the effect of the joint tuning ofλ andω. We look at the regression
problem (2) with the first regression functionf1(x). In the first simulation we
take the sample points to be equidistant in(−π,π ]. The scatter plot is shown
in Figure 3, top left panel. We use the periodic Gaussian regularization to
do the estimation forω = (k1/5)(1/2), λ = exp(−k2/5), k1 = 1, . . . ,100, k2 =
1, . . . ,100. For each combination ofω andλ we calculate the solution̂fλ,ω and
the averaged squared error(1/n)

∑
j [f̂λ,ω(xj ) − f (xj )]2. The bottom left panel

of Figure 3 gives the corresponding contour plot of the averaged squared error.
The x- andy-axes for the contour plot arek1 andk2, which are proportional to
ω2 and− logλ. Let the minimum of the averaged squared error bea. The levels in
the contour plot are at 1.01a,1.05a,1.1a,1.2a,1.5a,2a,3a,4a,5a,6a. We used
these levels to focus on the behavior of the averaged squared error around its
minimum. It is clear that the contour levels are almost straight lines, indicating
that the averaged squared errors are almost the same when− logλ varies linearly

FIG. 3. The top panels are the scatter plots of the data generated from the regression model (2)
with the regression function f1(x). Left: equidistant case. Right: nonequidistant case. The bottom
panels are the corresponding contour plots of the averaged squared errors of the periodic Gaussian
regularization. The x- and y-axes for the contour plots are proportional to ω2 and − logλ,
respectively. We can see that in both cases the contour levels are very close to straight lines.
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with ω2. This agrees with what is suggested by the asymptotic results, and suggests
that in regression problems, as long asω is fixed in a reasonable range, we can
concentrate on the tuning of the smoothing parameterλ.

Similar to any method of regularization, the periodic Gaussian regularization
does not depend on thex ’s being equidistant. The same phenomenon in the joint
tuning ofλ andω appears when the inputx ’s are not equidistant. We run the same
simulation with nonequidistantx ’s, and the corresponding scatter plot and the
contour plot are given in the right panels of Figure 3. The nonequidistantx values
are generated by taking the fractional part of a normal variate with mean 1/4 and
standard deviation 1/4, and then scaling the[0,1] interval to[−π,π ].

We run the same experiment with the other functions,f2, f3 andf4, and the
same observation about the joint tuning ofλ andω is made in these experiments.
This supports our strategy of a rough tuning forω and a fine tuning overλ.

Next we compare the periodic Gaussian regularization with the periodic cubic
smoothing spline for regression on the circle on the four functions in Figure 2. The
periodic cubic smoothing spline is the solution to

n∑
j=1

(
yj − f (xj )

)2 + λ

∫ π

−π
[f ′′(t)]2 dt.

This penalty corresponds to the second-order Sobolev space, but leaves the linear
functions unpenalized. For an introduction to the periodic cubic smoothing spline,
see Wahba (1990) or Gu (2002).

We fix the x ’s to be equidistant in(−π,π) in our comparison. We generate
y ’s according to the regression model (2) with the four functions we consider. In
both the periodic Gaussian regularization and the periodic cubic smoothing spline,
the smoothing parameters are chosen according to Mallows’Cp. We search the
minimal point of Mallows’ Cp over ω = 0.3k1 − 0.1, for k1 = 1, . . . ,10, and
λ = exp(−0.4k2 + 7), for k2 = 1, . . . ,50, for the periodic Gaussian regularization;
and we search overλ = exp(−0.4k2 + 7), for k2 = 1, . . . ,50, for the smoothing
spline. We use the chosen smoothing parameter(s) to compute the solutions. For
each generated dataset, we calculate the averaged squared error of the periodic
Gaussian regularization and the periodic cubic smoothing spline.

We run the simulation 100 times. The averaged squared errors over the 100 runs
are summarized in Table 1. For each regression function, a two-sided pairedt-test
is performed to compare the periodic Gaussian regularization and the periodic
cubic smoothing spline based on the 100 runs. For the first function, thep-value
is 0.49; for the second function, thep-value is 0.06, and it seems the smoothing
spline may perform better; for the third function, thep-value is 0.9; for the fourth
function, thep-value is very close to 0, and the periodic Gaussian regularization
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TABLE 1
Averaged squared error over 100runs, for the periodic cubic smoothing spline, the
periodic Gaussian regularization, and the periodic Gaussian regularization with

constant left unpenalized, on four different functions of varying
order of smoothness

Averaged squared error

Regression
functions

Periodic cubic
smoothing spline

Periodic Gaussian regularization

Constant penalized Constant unpenalized

1 0.0711 0.0675 0.0682
2 0.0541 0.0578 0.0582
3 0.0457 0.0462 0.0448
4 0.1136 0.0899 0.0899

performed significantly better: we can see the averaged squared error of the
periodic Gaussian regularization is 22% less than that of the periodic smoothing
spline.

7. Summary and discussion. In this paper we study the method of regular-
ization with the periodic Gaussian kernel. Asymptotically, the method adapts to
unknown order of smoothness and is efficient compared with the minimax risk
when the underlying function is reasonably smooth. The smoothing parameters
in the periodic Gaussian regularization can be chosen adaptively without loss of
asymptotic efficiency. Limited experiments in the finite sample case suggest that
the performance of the periodic Gaussian regularization is comparable to that
of the periodic cubic smoothing spline when the underlying regression function
is reasonably smooth, and the periodic Gaussian regularization may have some
advantage over the periodic cubic smoothing spline when the regression function
is very smooth. This agrees with the asymptotic analysis, since it is well known
that the cubic smoothing spline does not adapt to high order of smoothness.

The Gaussian reproducing kernel is commonly used in practice and has been
successful in empirical studies. Our study on the periodic Gaussian reproducing
kernel gives a partial explanation of the success of Gaussian reproducing kernel in
practice, as we expect the Gaussian reproducing kernel to have similar properties to
its periodic counterpart. When we apply the nonperiodic version of the Gaussian
kernel to the examples in our simulation, the results are slightly inferior to the
periodic version. This is to be expected, as the nonperiodic version does not take
advantage of the fact that the functions in the simulation are periodic. However,
the difference is not large. The averaged squared errors are 0.0736, 0.0679, 0.0559
and 0.1198.
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The penalty functionalJ0 in periodic Gaussian regularization corresponds to the
norm of the infinite order Sobolev spaceH∞

ω . It is also possible to consider
the method of regularization with the penalty functional being the norm of the
spaceAα of analytic functions. This penalty cannot be written in terms of
integrals of squared derivatives of integer order, but can be written in terms
of derivatives of fractional order. In the Gaussian sequence model setting, the
method of regularization with the analytic function space penalty is equivalent
to the method of regularization (10) withβl = exp(αl). Similar asymptotic
results as derived for the periodic Gaussian regularization can be derived for this
alternative regularization: the method adapts to Sobolev spaceHm with unknown
smoothnessm. It is also possible to give an explicit expression for the reproducing
kernel. In fact, the reproducing kernel is (14) with exp(−ω2l2/2) replaced by
exp(−αl). An equivalent form of this reproducing kernel isE∞(s − t), with
E∞(r) defined asE∞(r) ≡ ∑∞

k=−∞ E(r − 2kπ) andE(r) = α/[π(r2 + α2)] the
Cauchy density function. This form follows from Lemma 3. Unlike the periodic
Gaussian kernel case, the decay ofE(x) is slow, and it does not seem practical to
use the formE∞(s − t) for computation. On the other hand, it might be possible
to calculate the reproducing kernel with the series in (14) with exp(−αl).

8. Proofs.

PROOF OFTHEOREM 1. The proof is an application of the theorem of Pinsker
(1980). For completeness we state a form of the theorem given in Johnstone
[(1998), Proposition 6.1and Theorem 6.2]:

PINSKER’ S THEOREM. Consider the Gaussian sequence model (9) with the
parameter space being the ellipsoid 
 = {θ :

∑
l a

2
l θ

2
l ≤ Q} with al > 0 and

al → ∞. Then the minimax risk R(
,n) is asymptotically equivalent to the linear
minimax risk RL(
,n), which satisfies

RL(
,n) = 1

n

∑
l

(
1− al

µ

)
+
,(16)

where µ = µ(n,Q) is determined by

1

n

∑
l

al(µ − al)+ = Q.(17)

In our case we havea2l = a2l−1 = exp(l2ω2/4), and (17) becomes

2
k∑

l=1

exp(l2ω2/4){µ − exp(l2ω2/4)} = nQ,
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with k = k(µ) = [2ω−1(logµ)1/2], where[·] stands for the integer part. Notice
that sums such as

∑k
l=1 exp(l2ω2/4) are dominated by the single leading term.

Some calculations then give that logµ ∼ (1/2) log(nQ). Therefore,

k = k(n) ∼ 21/2ω−1(log(nQ)
)1/2

.

Hence, it follows from Pinsker’s theorem that

R(
,n) ∼ RL(
,n)

= 1

n

∑
l

(
1− al

µ

)
+

= 2

n

k∑
l=1

{
1− exp(l2ω2/4)

µ

}

∼ 2

n
k(n) ∼ 23/2n−1ω−1(logn)1/2.

This completes the proof of Theorem 1.�

PROOF OF LEMMA 1. Solving the minimization problem (10), we get the

method of regularization estimatorθ̂l = (1+ λβl)
−1yl . As λ goes to zero, we have

∑
l

varθ̂ = (1/n)
∑
l

(1+ λβl)
−2

∼ (2/n)

∞∑
l=1

(
1+ λel2ω2/2)−2

∼ (2/n)

∫ ∞
0

(
1+ λex2ω2/2)−2

dx

= √
2n−1ω−1

∫ ∞
logλ

(1+ ey)−2(y − logλ)−1/2dy

= √
2n−1ω−1

[∫ 0

logλ
(1+ ey)−2(y − logλ)−1/2dy

+
∫ ∞

0
(1+ ey)−2(y − logλ)−1/2dy

]
.

For the second term in the bracket, we have

0 ≤
∫ ∞

0
(1+ ey)−2(y − logλ)−1/2dy ≤ (− logλ)−1/2

∫ ∞
0

(1+ ey)−2dy.
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Now let us look at the first term in the bracket. We have, on one hand,∫ 0

logλ
(1+ ey)−2(y − logλ)−1/2dy ≤

∫ 0

logλ
(y − logλ)−1/2dy = 2(− logλ)1/2;

on the other hand,∫ 0

logλ
(1+ ey)−2(y − logλ)−1/2dy

≥
∫ − log(− logλ)

logλ
(1+ ey)−2(y − logλ)−1/2dy

≥ (
1+ (− logλ)−1)−2

∫ − log(− logλ)

logλ
(y − logλ)−1/2dy

∼ 2(− logλ)1/2.

Therefore, we have∫ 0

logλ
(1+ ey)−2(y − logλ)−1/2dy ∼ 2(− logλ)1/2,

and the conclusion of the lemma follows.�

PROOF OF THEOREM 2. The periodic Gaussian regularization estimator is
θ̂l = (1+ λβl)

−1yl . We have, for anyθ ∈ H∞
ω (Q),

∞∑
l=0

(Eθ̂l − θl)
2 =

∞∑
l=0

λ2β2
l (1+ λβl)

−2θ2
l

≤ 1/4λ

∞∑
l=0

βlθ
2
l = 1/4λ

∞∑
l=0

ρlθ
2
l ≤ 1/4λQ.

Hence, from Lemma 1 we have, for anyθ ∈ H∞
ω (Q),

E
∑

l

(θ̂l − θl)
2 =

∞∑
l=0

(Eθ̂l − θl)
2 +

∞∑
l=0

varθ̂ ≤ 2
√

2ω−1n−1(− logλ)1/2 + Qλ/4.

The last quantity is asymptotically equivalent to the asymptotic minimax risk
2
√

2ω−1n−1(− logλ)1/2 under (11). Therefore, under (11), the periodic Gaussian
regularization estimator is asymptotically minimax.�

PROOF OFTHEOREM 3. The estimator iŝθl = (1+λβl)
−1yl . From Lemma 1,

we have ∑
l

varθ̂ = (1/n)
∑
l

(1+ λβl)
−2 ∼ 2

√
2ω−1n−1(− logλ)1/2.
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On the other hand, we have

sup
θ∈Hm(Q)

∑
l

(Eθ̂l − θl)
2

= sup
θ∈Hm(Q)

∞∑
l=0

(1+ λ−1β−1
l )−2θ2

l

= sup
θ∈Hm(Q)

∞∑
l=0

(1+ λ−1β−1
l )−2ρ−1

l (ρlθ
2
l ).

Hereρ2l−1 = ρ2l = 1+ l2m are the coefficients in the definition (6) of the Sobolev
ellipsoidHm(Q). Clearly, the maximum is achieved by putting all massQ at terml

that maximizes(1+ λ−1β−1
l )−2ρ−1

l . That is, the maximum is

Q

[
max

l
(1+ λ−1β−1

l )−2ρ−1
l

]
.(18)

To evaluate (18), we first find the minimizer of

Bλ(x) = [1+ λ−1 exp(−x2ω2/2)]2(1+ x2m) overx ≥ 0.

Letx0(λ) be a global minimizer ofBλ(x). It is easy to see thatx0(λ) 
= ∞, since
Bλ(∞) = ∞. Now let us first show thatx0(λ) → ∞ asλ → 0. We prove this with
the elementary definition of limits. For anyM > 0, we can findx̄ > M such that
exp[(x̄2 − M2)ω2] > 1+ x̄2m. Then limλ→0 D(λ) > 1, where

D(λ) = [λ + exp(−M2ω2/2)]2[λ + exp(−x̄2ω2/2)]−2(1+ x̄2m)−1.

Therefore, there existsδ > 0, such thatD(λ) > 1 for any λ < δ. On the other
hand, for anyx ≤ M , we haveBλ(x)/Bλ(x̄) ≥ D(λ). Therefore, for anyλ < δ, we
have infx≤M Bλ(x) > Bλ(x̄), therefore,x0(λ) > M . This shows thatx0(λ) → ∞
asλ → 0.

Sincex0(λ) 
= ∞, we haveB ′
λ(x0) = 0. That is,

m−1ω2(x2
0 + x

−(2m−2)
0

) = 1+ λexp(x2
0ω2/2).(19)

Sincex0(λ) → ∞ asλ → 0, we have

m−1ω2x2
0 ∼ λexp(x2

0ω2/2),(20)

x2
0ω2/2 ∼ (− logλ).(21)

Therefore, by (19) and (20) we have

Bλ(x0) = [
1+ (

m−1ω2(x2
0 + x

−(2m−2)
0

) − 1
)−1]2

(1+ x2m
0 ) ∼ x2m

0 .

From this and (21), we see that

Q

[
max

l
(1+ λ−1β−1

l )−2ρ−1
l

]
∼ Qx−2m

0 ∼ Q2−mω2m(− logλ)−m.
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Therefore,

max
θ∈Hm(Q)

∑
l

E(θ̂l − θl)
2

(22)
∼ Q2−mω2m(− logλ)−m + 2

√
2ω−1n−1(− logλ)1/2.

The conclusion of the theorem then comes from simple calculations.�

PROOF OFTHEOREM 5. By (13), we have

sup
θ∈Hm(Q)

∑
l

E(θ̂∗
l − θl)

2

≤ (
1+ O(B−1)

)
sup

θ∈Hm(Q)

min
λ,ωs

{∑
l

E(θ̂l − θl)
2

}
+ n−1O(B)

≤ (
1+ O(B−1)

)
min
λ,ωs

sup
θ∈Hm(Q)

{∑
l

E(θ̂l − θl)
2

}
+ n−1O(B).

Similar inequalities hold forH∞
ωs

(Q) and Aα(Q). Now takeB = (logn)1/3,
and the conclusion of the theorem follows from Theorems 1–4 and the fact that
ωs ∈ {ω1, . . . ,ωS} has finitely many possibilities.�
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