257 research outputs found

    The Santa Fe Light Cone Simulation Project: II. The Prospects for Direct Detection of the WHIM with SZE Surveys

    Full text link
    Detection of the Warm-Hot Intergalactic Medium (WHIM) using Sunyaev-Zeldovich effect (SZE) surveys is an intriguing possibility, and one that may allow observers to quantify the amount of "missing baryons" in the WHIM phase. We estimate the necessary sensitivity for detecting low density WHIM gas with the South Pole Telescope (SPT) and Planck Surveyor for a synthetic 100 square degree sky survey. This survey is generated from a very large, high dynamic range adaptive mesh refinement cosmological simulation performed with the Enzo code. We find that for a modest increase in the SPT survey sensitivity (a factor of 2-4), the WHIM gas makes a detectable contribution to the integrated sky signal. For a Planck-like satellite, similar detections are possible with a more significant increase in sensitivity (a factor of 8-10). We point out that for the WHIM gas, the kinematic SZE signal can sometimes dominate the thermal SZE where the thermal SZE decrement is maximal (150 GHz), and that using the combination of the two increases the chance of WHIM detection using SZE surveys. However, we find no evidence of unique features in the thermal SZE angular power spectrum that may aid in its detection. Interestingly, there are differences in the power spectrum of the kinematic SZE, which may not allow us to detect the WHIM directly, but could be an important contaminant in cosmological analyses of the kSZE-derived velocity field. Corrections derived from numerical simulations may be necessary to account for this contamination.Comment: 9 pages, submitted to Astrophysical Journa

    Markov Chain Monte Carlo joint analysis of Chandra X-ray imaging spectroscopy and Sunyaev-Zeldovich Effect data

    Full text link
    X-ray and Sunyaev-Zeldovich Effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and Sunyaev-Zeldovich Effect data were obtained from the BIMA and OVRO arrays. We introduce a Markov chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in follow-up papers to determine the distances to a large sample of galaxy clusters.Comment: ApJ accepted, scheduled for ApJ 10 October 2004, v614 issue. Title changed, added more convergence diagnostic tests, Figure 7 converted to lower resolution for easier download, other minor change

    Determination of the Cosmic Distance Scale from Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements of High Redshift Galaxy Clusters

    Full text link
    We determine the distance to 38 clusters of galaxies in the redshift range 0.14 < z < 0.89 using X-ray data from Chandra and Sunyaev-Zeldovich Effect data from the Owens Valley Radio Observatory and the Berkeley-Illinois-Maryland Association interferometric arrays. The cluster plasma and dark matter distributions are analyzed using a hydrostatic equilibrium model that accounts for radial variations in density, temperature and abundance, and the statistical and systematic errors of this method are quantified. The analysis is performed via a Markov chain Monte Carlo technique that provides simultaneous estimation of all model parameters. We measure a Hubble constant of 76.9 +3.9-3.4 +10.0-8.0 km/s/Mpc (statistical followed by systematic uncertainty at 68% confidence) for an Omega_M=0.3, Omega_Lambda=0.7 cosmology. We also analyze the data using an isothermal beta model that does not invoke the hydrostatic equilibrium assumption, and find H_0=73.7 +4.6-3.8 +9.5-7.6 km/s/Mpc; to avoid effects from cool cores in clusters, we repeated this analysis excluding the central 100 kpc from the X-ray data, and find H_0=77.6 +4.8-4.3 +10.1-8.2 km/s/Mpc. The consistency between the models illustrates the relative insensitivity of SZE/X-ray determinations of H_0 to the details of the cluster model. Our determination of the Hubble parameter in the distant universe agrees with the recent measurement from the Hubble Space Telescope key project that probes the nearby universe.Comment: ApJ submitted (revised version

    X-ray and Sunyaev-Zel'dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters

    Get PDF
    We present gas mass fractions of 38 massive galaxy clusters spanning redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA interferometric Sunyaev-Zel'dovich Effect measurements. We use three models for the gas distribution: (1) an isothermal beta-model fit jointly to the X-ray data at radii beyond 100 kpc and to all of the SZE data,(2) a non-isothermal double beta-model fit jointly to all of the X-ray and SZE data, and (3) an isothermal beta-model fit only to the SZE spatial data. We show that the simple isothermal model well characterizes the intracluster medium (ICM) outside of the cluster core in clusters with a wide range of morphological properties. The X-ray and SZE determinations of mean gas mass fractions for the 100 kpc-cut isothermal beta-model are fgas(X-ray)=0.110 +0.003-0.003 +0.006-0.018 and fgas(SZE)=0.116 +0.005-0.005 +0.009-0.026, where uncertainties are statistical followed by systematic at 68% confidence. For the non-isothermal double beta-model, fgas(X-ray)=0.119 +0.003-0.003 +0.007-0.014 and fgas(SZE)=0.121 +0.005-0.005 +0.009-0.016. For the SZE-only model, fgas(SZE)=0.120 +0.009-0.009 +0.009-0.027. Our results indicate that the ratio of the gas mass fraction within r2500 to the cosmic baryon fraction is 0.68 +0.10-0.16 where the range includes statistical and systematic uncertainties. By assuming that cluster gas mass fractions are independent of redshift, we find that the results are in agreement with standard LambdaCDM cosmology and are inconsistent with a flat matter dominated universe.Comment: ApJ, submitted. 47 pages, 5 figures, 8 table

    Bayesian modelling of clusters of galaxies from multi-frequency pointed Sunyaev--Zel'dovich observations

    Full text link
    We present a Bayesian approach to modelling galaxy clusters using multi-frequency pointed observations from telescopes that exploit the Sunyaev--Zel'dovich effect. We use the recently developed MultiNest technique (Feroz, Hobson & Bridges, 2008) to explore the high-dimensional parameter spaces and also to calculate the Bayesian evidence. This permits robust parameter estimation as well as model comparison. Tests on simulated Arcminute Microkelvin Imager observations of a cluster, in the presence of primary CMB signal, radio point sources (detected as well as an unresolved background) and receiver noise, show that our algorithm is able to analyse jointly the data from six frequency channels, sample the posterior space of the model and calculate the Bayesian evidence very efficiently on a single processor. We also illustrate the robustness of our detection process by applying it to a field with radio sources and primordial CMB but no cluster, and show that indeed no cluster is identified. The extension of our methodology to the detection and modelling of multiple clusters in multi-frequency SZ survey data will be described in a future work.Comment: 12 pages, 7 figures, submitted to MNRA

    A Multi-wavelength Study of the Sunyaev-Zel'dovich Effect in the Triple-Merger Cluster MACS J0717.5+3745 with MUSTANG and Bolocam

    Get PDF
    We present 90, 140, and 268GHz sub-arcminute resolution imaging of the Sunyaev-Zel'dovich effect (SZE) in MACSJ0717.5+3745. Our 90GHz SZE data result in a sensitive, 34uJy/bm map at 13" resolution using MUSTANG. Our 140 and 268GHz SZE imaging, with resolutions of 58" and 31" and sensitivities of 1.8 and 3.3mJy/beam respectively, was obtained using Bolocam. We compare these maps to a 2-dimensional pressure map derived from Chandra X-ray observations. Our MUSTANG data confirm previous indications from Chandra of a pressure enhancement due to shock-heated, >20keV gas immediately adjacent to extended radio emission seen in low-frequency radio maps. The MUSTANG data also detect pressure substructure that is not well-constrained by the X-ray data in the remnant core of a merging subcluster. We find that the small-scale pressure enhancements in the MUSTANG data amount to ~2% of the total pressure measured in the 140GHz Bolocam observations. The X-ray template also fails on larger scales to accurately describe the Bolocam data, particularly at the location of a subcluster known to have a high line of sight optical velocity (~3200km/s). Our Bolocam data are adequately described when we add an additional component - not described by a thermal SZE spectrum - coincident with this subcluster. Using flux densities extracted from our model fits, and marginalizing over the temperature constraints for the region, we fit a thermal+kinetic SZE spectrum to our data and find the subcluster has a best-fit line of sight proper velocity of 3600+3440/-2160km/s. This agrees with the optical velocity estimates for the subcluster. The probability of velocity<0 given our measurements is 2.1%. Repeating this analysis using flux densities measured non-parametrically results in a 3.4% probability of a velocity<=0. We note that this tantalizing result for the kinetic SZE is on resolved, subcluster scales.Comment: 10 Figures, 18 pages. this version corrects issues with the previous arXiv versio

    Single electron detection and spectroscopy via relativistic cyclotron radiation

    Full text link
    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.Comment: 6 pages, 3 figure

    The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay

    Full text link
    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear Physic
    corecore