13,807 research outputs found

    Probing New Physics From CP Violation in Radiative B Decays

    Get PDF
    When new CP-violating interactions are dominated by flavor changing neutral particle exchanges, that may occur in many extensions of the standard model. We examine a type 3 two Higgs doublet model and find that direct CP asymmetries can be as large as about 25% . Time-dependent and time-integrated mixing-induced CP asymmetries up to 85 and 40 %, respectively, are possible without conflict with other constraints. It mainly requirs an enhanced chromo-magnetic dipole bsgb\to sg decay to be close to the present experimental bound.Comment: 7 pages, latex, no figure

    Multi-Atomic Mirror for Perfect Reflection of Single Photons in A Wide Band of Frequency

    Full text link
    A resonant two level atom doped in one dimensional waveguide behaves as a mirror, but this single-atom "mirror" can only reflect single photon perfectly at a specific frequency. For a one dimensional coupled-resonator waveguide, we propose to extend the perfect reflection region from a specific frequency to a wide band by placing many atoms individually in the resonators in a finite coordinate region of the waveguide. Such a doped resonator array promises us to control the propagation of a practical photon wave packet with certain momentum distribution instead of a single photon, which is ideally represented by a plane wave with specific momentum. The studies based on the discrete-coordinate scattering theory display that such hybrid structure indeed provides a near-perfect reflection for single photon in a wide band. We also calculated photon group velocity distribution, which shows that the perfect reflection with wide band exactly corresponds to the stopping light region.Comment: 8 pages, 10 figure

    Temperature dependence of the conductivity of the electronic crystal

    Full text link
    We study the temperature dependence of the conductivity of the 2D electronic solid. In realistic samples, a domain structure forms in the solid and each domain randomly orients in the absence of the in-plane field. At higher temperature, the electron transport is governed by thermal activation form of σxx(T)eΔ0/kBT\sigma_{xx}(T)\propto e^{-\Delta_0/k_BT}. The impurities will localize the electron states along the edges of the crystal domains. At sufficient low temperature, another transport mechanism called Mott's variable range hopping mechanism, similar to that in a disorder insulator takes effect. We show that as the temperature decreases, a crossover from the fixed range hopping of the transport to the variable range hopping of transport in the 2D electron system may be experimentally observed.Comment: 4 pages,1 figure

    Tunneling of correlated electrons in ultra high magnetic field

    Full text link
    Effects of the electron-electron interaction on tunneling into a metal in ultra-high magnetic field (ultra-quantum limit) are studied. The range of the interaction is found to have a decisive effect both on the nature of the field-induced instability of the ground state and on the properties of the system at energies above the corresponding gap. For a short-range repulsive interaction, tunneling is dominated by the renormalization of the coupling constant, which leads eventually to the charge-density wave instability. For a long-range interaction, there exists an intermediate energy range in which the conductance obeys a power-law scaling form, similar to that of a 1D Luttinger liquid. The exponent is magnetic-field dependent, and more surprisingly, may be positive or negative, i. e., interactions may either suppress or enhance the tunneling conductance compared to its non-interacting value. At energies near the gap, scaling breaks down and tunneling is again dominated by the instability, which in this case is an (anisotropic) Wigner crystal instability.Comment: 4 pages, 2 .eps figure

    K-Connected Cores Computation in Large Dual Networks

    Full text link
    © 2018, The Author(s). Computing k- cores is a fundamental and important graph problem, which can be applied in many areas, such as community detection, network visualization, and network topology analysis. Due to the complex relationship between different entities, dual graph widely exists in the applications. A dual graph contains a physical graph and a conceptual graph, both of which have the same vertex set. Given that there exist no previous studies on the k- core in dual graphs, we formulate a k-connected core (k- CCO) model in dual graphs. A k- CCO is a k- core in the conceptual graph, and also connected in the physical graph. Given a dual graph and an integer k, we propose a polynomial time algorithm for computing all k- CCOs. We also propose three algorithms for computing all maximum-connected cores (MCCO), which are the existing k- CCOs such that a (k+ 1) -CCO does not exist. We further study a subgraph search problem, which is computing a k- CCO that contains a set of query vertices. We propose an index-based approach to efficiently answer the query for any given parameter k. We conduct extensive experiments on six real-world datasets and four synthetic datasets. The experimental results demonstrate the effectiveness and efficiency of our proposed algorithms

    Production and decay of the neutral top-pion in high energy e+ee^{+}e^{-} colliders

    Full text link
    We study the production and decay of the neutral top-pion πt0\pi_{t}^{0} predicted by topcolor-assisted technicolor(TC2) theory. Our results show that, except the dominant decay modes bbˉb\bar{b}, tˉc\bar{t}c and gggg, the πt0\pi_{t}^{0} can also decay into γγ\gamma\gamma and ZγZ \gamma modes. It can be significantly produced at high energy e+ee^{+}e^{-} collider(LC) experiments via the processes e+eπt0γe^{+}e^{-}\to \pi_{t}^{0}\gamma and e+eZπt0e^{+}e^{-}\to Z\pi_{t}^{0}. We further calculate the production cross sections of the processes e+eγπt0γtˉce^{+}e^{-}\to\gamma\pi_{t}^{0}\to\gamma\bar{t}c and e+eZπt0Ztˉce^{+}e^{-}\to Z\pi_{t}^{0}\to Z\bar{t}c. We find that the signatures of the neutral top-pion πt0\pi_{t}^{0} can be detected via these processes.Comment: Latex file, 13 Pages, 6 eps figures. to be published in Phys.Rev.

    Single production of new gauge bosons from the littlest Higgs model at the TeVTeV energy eγe^{-}\gamma colliders

    Full text link
    In the context of the littlest Higgs(LH) model, we study single production of the new gauge bosons BHB_{H}, ZHZ_{H} and WH±W_{H}^{\pm} via eγe^{-}\gamma collisions and discuss the possibility of detecting these new particles in the TeVTeV energy e+ee^{+}e^{-} collider(LCLC). We find that these new particles can not be detected via the eννe^{-}\nu\nu signal in all of the parameter space preferred by the electroweak precision data. However, the heavy gauge bosons BHB_{H} and ZHZ_{H} may be observed via the decay channel BH(ZH)l+lB_{H}(Z_{H})\to l^{+}l^{-} in wide range of the parameter space.Comment: references added, typos corrected. To be published in Phys. Rev.
    corecore