1,590 research outputs found

    Intrinsic radiosensitivity of human pancreatic tumour cells and the radiosensitising potency of the nitric oxide donor sodium nitroprusside.

    Get PDF
    A panel of eight human pancreatic tumour cell lines displayed high intrinsic radioresistance, with mean inactivation doses between 2.4 and 6.5 Gy, similar to those reported for melanoma and glioblastoma. The radiosensitising potency of sodium nitroprusside, a bioreductive nitric oxide donor, was assessed in a model of metabolism-induced hypoxia in a cell micropellet. Sodium nitroprusside at 0.1 mM revealed a radiosensitising effect with an overall enhancement ratio of 1.9 compared with 2.5 for oxygen. Radiosensitising activity correlated with the enhancement of single-strand DNA breakage caused by radiation. In suspensions with cell densities of between 3% and 30% (v/v), the half-life of sodium nitroprusside decreased from 31 to 3.2 min, suggesting a value of around 1 min for micropellets. Despite this variation, the radiosensitising activity was similar in micropellets and in diluted cell suspensions. S-nitroso-L-glutathione was found to possess radiosensitising activity, consistent with a possible role of natural thiols in the storing of radiobiologically active nitric oxide adducts derived from sodium nitroprusside. As measured by a nitric oxide-specific microsensor, activation of sodium nitroprusside occurred by bioreduction, whereas S-nitroso-L-glutathione showed substantial spontaneous decomposition. Both agents appear to exert radiosensitising action through nitric oxide as its scavenging by carboxy phenyltetramethylimidazolineoxyl N-oxide (carboxy-PTI0) and oxyhaemoglobin resulted in attenuated radiosensitisation. Sodium nitroprusside was at least 10-fold more potent than etanidazole, a 2-nitroimidazole used as a reference. Our data suggest that sodium nitroprusside, a drug currently used for the treatment of hypertension, is a potential tumour radioresponse modifier

    Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    Get PDF
    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action

    Quality standards in respiratory real-life effectiveness research: the REal Life EVidence AssessmeNt Tool (RELEVANT): report from the Respiratory Effectiveness Group—European Academy of Allergy and Clinical Immunology Task Force

    Get PDF
    A Task Force was commissioned jointly by the European Academy of Allergy and Clinical Immunology (EAACI) and the Respiratory Effectiveness Group (REG) to develop a quality assessment tool for real-life observational research to identify high-quality real-life asthma studies that could be considered within future guideline development. The resulting REal Life EVidence AssessmeNt Tool (RELEVANT) was achieved through an extensive analysis of existing initiatives in this area. The first version was piloted among 9 raters across 6 articles; the revised, interim, version underwent extensive testing by 22 reviewers from the EAACI membership and REG collaborator group, leading to further revisions and tool finalisation. RELEVANT was validated through an analysis of real-life effectiveness studies identified via systematic review of Medline and Embase databases and relating to topics for which real-life studies may offer valuable evidence complementary to that from randomised controlled trials. The topics were selected through a vote among Task Force members and related to the influence of adherence, smoking, inhaler device and particle size on asthma treatment effectiveness. Although highlighting a general lack of high-quality real-life effectiveness observational research on these clinically important topics, the analysis provided insights into how identified observational studies might inform asthma guidelines developers and clinicians. Overall, RELEVANT appeared reliable and easy to use by expert reviewers. Using such quality appraisal tools is mandatory to assess whether specific observational real-life effectiveness studies can be used to inform guideline development and/or decision-making in clinical practice

    The REal Life EVidence AssessmeNt Tool (RELEVANT): development of a novel quality assurance asset to rate observational comparative effectiveness research studies

    Get PDF
    Background Evidence from observational comparative effectiveness research (CER) is ranked below that from randomized controlled trials in traditional evidence hierarchies. However, asthma observational CER studies represent an important complementary evidence source answering different research questions and are particularly valuable in guiding clinical decision making in real-life patient and practice settings. Tools are required to assist in quality appraisal of observational CER to enable identification of and confidence in high-quality CER evidence to inform guideline development. Methods The REal Life EVidence AssessmeNt Tool (RELEVANT) was developed through a step-wise approach. We conducted an iterative refinement of the tool based on Task Force member expertise and feedback from pilot testing the tool until reaching adequate inter-rater agreement percentages. Two distinct pilots were conducted—the first involving six members of the Respiratory Effectiveness Group (REG) and European Academy of Allergy and Clinical Immunology (EAACI) joint Task Force for quality appraisal of observational asthma CER; the second involving 22 members of REG and EAACI membership. The final tool consists of 21 quality sub-items distributed across seven methodology domains: Background, Design, Measures, Analysis, Results, Discussion/Interpretation, and Conflict of Interest. Eleven of these sub-items are considered critical and named “primary sub-items”. Results Following the second pilot, RELEVANT showed inter-rater agreement ≄ 70% for 94% of all primary and 93% for all secondary sub-items tested across three rater groups. For observational CER to be classified as sufficiently high quality for future guideline consideration, all RELEVANT primary sub-items must be fulfilled. The ten secondary sub-items further qualify the relative strengths and weaknesses of the published CER evidence. RELEVANT could also be applicable to general quality appraisal of observational CER across other medical specialties. Conclusions RELEVANT is the first quality checklist to assist in the appraisal of published observational CER developed through iterative feedback derived from pilot implementation and inter-rater agreement evaluation. Developed for a REG-EAACI Task Force quality appraisal of recent asthma CER, RELEVANT also has wider utility to support appraisal of CER literature in general (including pre-publication). It may also assist in manuscript development and in educating relevant stakeholders about key quality markers in observational CER

    Parametric Response Mapping as an Indicator of Bronchiolitis Obliterans Syndrome after Hematopoietic Stem Cell Transplantation

    Get PDF
    AbstractThe management of bronchiolitis obliterans syndrome (BOS) after hematopoietic cell transplantation presents many challenges, both diagnostically and therapeutically. We developed a computed tomography (CT) voxel-wise methodology termed parametric response mapping (PRM) that quantifies normal parenchyma, functional small airway disease (PRMfSAD), emphysema, and parenchymal disease as relative lung volumes. We now investigate the use of PRM as an imaging biomarker in the diagnosis of BOS. PRM was applied to CT data from 4 patient cohorts: acute infection (n = 11), BOS at onset (n = 34), BOS plus infection (n = 9), and age-matched, nontransplant control subjects (n = 23). Pulmonary function tests and bronchoalveolar lavage were used for group classification. Mean values for PRMfSAD were significantly greater in patients with BOS (38% ± 2%) when compared with those with infection alone (17% ± 4%, P < .0001) and age-matched control subjects (8.4% ± 1%, P < .0001). Patients with BOS had similar PRMfSAD profiles, whether a concurrent infection was present or not. An optimal cut-point for PRMfSAD of 28% of the total lung volume was identified, with values >28% highly indicative of BOS occurrence. PRM may provide a major advance in our ability to identify the small airway obstruction that characterizes BOS, even in the presence of concurrent infection

    Lipid-mediated Wnt protein stabilization enables serum-free culture of human organ stem cells

    Get PDF
    Wnt signalling proteins are essential for culture of human organ stem cells in organoids, but most Wnt protein formulations are poorly active in serum-free media. Here we show that purified Wnt3a protein is ineffective because it rapidly loses activity in culture media due to its hydrophobic nature, and its solubilization requires a detergent, CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), that interferes with stem cell self-renewal. By stabilizing the Wnt3a protein using phospholipids and cholesterol as carriers, we address both problems: Wnt activity remains stable in serum-free media, while non-toxic carriers allow the use of high Wnt concentrations. Stabilized Wnt3a supports strongly increased self-renewal of organ and embryonic stem cells and the serum-free establishment of human organoids from healthy and diseased intestine and liver. Moreover, the lipophilicity of Wnt3a protein greatly facilitates its purification. Our findings remove a major obstacle impeding clinical applications of adult stem cells and offer advantages for all cell culture uses of Wnt3a protein

    NF-ÎșB inhibition impairs the radioresponse of hypoxic EMT-6 tumour cells through downregulation of inducible nitric oxide synthase

    Get PDF
    Hypoxic EMT-6 tumour cells displayed a high level of inducible nitric oxide synthase (iNOS) and an increased radiosensitivity after a 16 h exposure to lipopolysaccharide, a known activator of nuclear factor-ÎșB (NF-ÎșB). Both iNOS activation and radioresponse were impaired by the NF-ÎșB inhibitors phenylarsine oxide and lactacystin. Contrasting to other studies, our data show that inhibition of NF-ÎșB may impair the radioresponse of tumour cells through downregulation of iNOS. © 2003 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Radiosensitization of hypoxic tumour cells by S-nitroso-N-acetylpenicillamine implicates a bioreductive mechanism of nitric oxide generation

    Get PDF
    The radiosensitizing activity of S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was assessed in a model of non-metabolic hypoxia achieved in an atmosphere of 95% nitrogen–5% carbon dioxide. A 10 min preincubation of hypoxic EMT-6 cells (10 × 106 ml−1) with 0.1 and 1 mM SNAP before radiation resulted in an enhancement ratio of 1.6 and 1.7 respectively. The level of spontaneous NO release, measured by a NO specific microsensor, correlated directly with the concentration of SNAP and was enhanced 50 times in the presence of cells. Dilution of the cell suspension from 10 to 0.1 × 106 ml−1 resulted in a 16-fold decline in NO release, but only a twofold decrease in radiosensitization was observed. Preincubation of hypoxic cells with SNAP for 3 min up to 30 min caused an increasing radiosensitizing effect. Extended preincubation of 100 min led to the loss of radiosensitization although the half-life of SNAP is known to be 4–5 h. Taken together, these observations suggest that SNAP generates NO predominantly by a bioreductive mechanism and that its biological half-life is unlikely to exceed 30 min. The lack of correlation between free NO radical and radiosensitizing activity may reflect a role of intracellular NO adducts which could contribute to radiosensitization as well. © 1999 Cancer Research Campaig
    • 

    corecore