44,493 research outputs found
Peres-Horodecki separability criterion for continuous variable systems
The Peres-Horodecki criterion of positivity under partial transpose is
studied in the context of separability of bipartite continuous variable states.
The partial transpose operation admits, in the continuous case, a geometric
interpretation as mirror reflection in phase space. This recognition leads to
uncertainty principles, stronger than the traditional ones, to be obeyed by all
separable states. For all bipartite Gaussian states, the Peres-Horodecki
criterion turns out to be necessary and sufficient condition for separability.Comment: 6 pages, no figure
The quantum correlation between the selection of the problem and that of the solution sheds light on the mechanism of the quantum speed up
In classical problem solving, there is of course correlation between the
selection of the problem on the part of Bob (the problem setter) and that of
the solution on the part of Alice (the problem solver). In quantum problem
solving, this correlation becomes quantum. This means that Alice contributes to
selecting 50% of the information that specifies the problem. As the solution is
a function of the problem, this gives to Alice advanced knowledge of 50% of the
information that specifies the solution. Both the quadratic and exponential
speed ups are explained by the fact that quantum algorithms start from this
advanced knowledge.Comment: Earlier version submitted to QIP 2011. Further clarified section 1,
"Outline of the argument", submitted to Phys Rev A, 16 page
Quantum Algorithm for the Collision Problem
In this note, we give a quantum algorithm that finds collisions in arbitrary
r-to-one functions after only O((N/r)^(1/3)) expected evaluations of the
function. Assuming the function is given by a black box, this is more efficient
than the best possible classical algorithm, even allowing probabilism. We also
give a similar algorithm for finding claws in pairs of functions. Furthermore,
we exhibit a space-time tradeoff for our technique. Our approach uses Grover's
quantum searching algorithm in a novel way.Comment: 8 pages, LaTeX2
Evidence for a continuum limit in causal set dynamics
We find evidence for a continuum limit of a particular causal set dynamics
which depends on only a single ``coupling constant'' and is easy to
simulate on a computer. The model in question is a stochastic process that can
also be interpreted as 1-dimensional directed percolation, or in terms of
random graphs.Comment: 24 pages, 19 figures, LaTeX, adjusted terminolog
Composite Fermions in Modulated Structures: Transport and Surface Acoustic Waves
Motivated by a recent experiment of Willett et al. [Phys. Rev. Lett. 78, 4478
(1997)], we employ semiclassical composite-fermion theory to study the effect
of a periodic density modulation on a quantum Hall system near Landau level
filling factor nu=1/2. We show that even a weak density modulation leads to
dramatic changes in surface-acoustic-wave (SAW) propagation, and propose an
explanation for several key features of the experimental observations. We
predict that properly arranged dc transport measurements would show a structure
similar to that seen in SAW measurements.Comment: Version published in Phys. Rev. Lett. Figures changed to show SAW
velocity shift. LaTeX, 5 pages, two included postscript figure
Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications
A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 ÎŒm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcmâ2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V
Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors
The capacitive behavior of TiC-derived carbon powders in two different electrolytes, NEt4BF4 in acetonitrile AN and NEt4BF4 in propylene carbonate PC, was studied using the cavity microelectrode CME technique. Comparisons of the cyclic voltammograms recorded at 10â1000 mV/s enabled correlation between adsorbed ion sizes and pore sizes, which is important for understanding the electrochemical capacitive behavior of carbon electrodes for electrical double-layer capacitor applications. The CME technique also allows a fast selection of carbon electrodes with matching pore sizes different sizes are needed for the negative and positive electrodes for the respective electrolyte system. Comparison of electrochemical capacitive behavior of the same salt, NEt4BF4, in different solvents, PC and AN, has shown that different pore sizes are required for different solvents, because only partial desolvation of ions occurs during the double-layer charging. Squeezing partially solvated ions into subnanometer pores, which are close to the desolvated ion size, may lead to distortion of the shape of cyclic voltammograms
Composite fermions in the Fractional Quantum Hall Effect: Transport at finite wavevector
We consider the conductivity tensor for composite fermions in a close to
half-filled Landau band in the temperature regime where the scattering off the
potential and the trapped gauge field of random impurities dominates. The
Boltzmann equation approach is employed to calculate the quasiclassical
transport properties at finite effective magnetic field, wavevector and
frequency. We present an exact solution of the kinetic equation for all
parameter regimes. Our results allow a consistent description of recently
observed surface acoustic wave resonances and other findings.Comment: REVTEX, 4 pages, 1 figur
Recoverin Regulates Light-dependent Phosphodiesterase Activity in Retinal Rods
The Ca2+-binding protein recoverin may regulate visual transduction in retinal rods and cones, but its functional role and mechanism of action remain controversial. We compared the photoresponses of rods from control mice and from mice in which the recoverin gene was knocked out. Our analysis indicates that Ca2+-recoverin prolongs the dark-adapted flash response and increases the rod's sensitivity to dim steady light. Knockout rods had faster Ca2+ dynamics, indicating that recoverin is a significant Ca2+ buffer in the outer segment, but incorporation of exogenous buffer did not restore wild-type behavior. We infer that Ca2+-recoverin potentiates light-triggered phosphodiesterase activity, probably by effectively prolonging the catalytic activity of photoexcited rhodopsin
The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem
We present Keck/DEIMOS spectroscopy of stars in 8 of the newly discovered
ultra-faint dwarf galaxies around the Milky Way. We measure the velocity
dispersions of Canes Venatici I and II, Ursa Major I and II, Coma Berenices,
Hercules, Leo IV and Leo T from the velocities of 18 - 214 stars in each galaxy
and find dispersions ranging from 3.3 to 7.6 km/s. The 6 galaxies with absolute
magnitudes M_V < -4 are highly dark matter-dominated, with mass-to-light ratios
approaching 1000. The measured velocity dispersions are inversely correlated
with their luminosities, indicating that a minimum mass for luminous galactic
systems may not yet have been reached. We also measure the metallicities of the
observed stars and find that the 6 brightest of the ultra-faint dwarfs extend
the luminosity-metallicity relationship followed by brighter dwarfs by 2 orders
of magnitude in luminosity; several of these objects have mean metallicities as
low as [Fe/H] = -2.3 and therefore represent some of the most metal-poor known
stellar systems. We detect metallicity spreads of up to 0.5 dex in several
objects, suggesting multiple star formation epochs. Having established the
masses of the ultra-faint dwarfs, we re-examine the missing satellite problem.
After correcting for the sky coverage of the SDSS, we find that the ultra-faint
dwarfs substantially alleviate the discrepancy between the predicted and
observed numbers of satellites around the Milky Way, but there are still a
factor of ~4 too few dwarf galaxies over a significant range of masses. We show
that if galaxy formation in low-mass dark matter halos is strongly suppressed
after reionization, the simulated circular velocity function of CDM subhalos
can be brought into approximate agreement with the observed circular velocity
function of Milky Way satellite galaxies. [slightly abridged]Comment: 22 pages, 15 figures (12 in color), 6 tables, minor revisions in
response to referee report. Accepted for publication in Ap
- âŠ