7,170 research outputs found

    Uncertainties of predictions from parton distribution functions II: the Hessian method

    Get PDF
    We develop a general method to quantify the uncertainties of parton distribution functions and their physical predictions, with emphasis on incorporating all relevant experimental constraints. The method uses the Hessian formalism to study an effective chi-squared function that quantifies the fit between theory and experiment. Key ingredients are a recently developed iterative procedure to calculate the Hessian matrix in the difficult global analysis environment, and the use of parameters defined as components along appropriately normalized eigenvectors. The result is a set of 2d Eigenvector Basis parton distributions (where d=16 is the number of parton parameters) from which the uncertainty on any physical quantity due to the uncertainty in parton distributions can be calculated. We illustrate the method by applying it to calculate uncertainties of gluon and quark distribution functions, W boson rapidity distributions, and the correlation between W and Z production cross sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix changed to HEP standar

    Neutrino Dimuon Production and the Strangeness Asymmetry of the Nucleon

    Get PDF
    We have performed the first global QCD analysis to include the CCFR and NuTeV dimuon data, which provide direct constraints on the strange and anti-strange parton distributions, s(x)s(x) and sˉ(x)\bar{s}(x). To explore the strangeness sector, we adopt a general parametrization of the non-perturbative s(x),sˉ(x)s(x), \bar{s}(x) functions satisfying basic QCD requirements. We find that the strangeness asymmetry, as represented by the momentum integral [S−]≡∫01x[s(x)−sˉ(x)]dx[S^{-}]\equiv \int_0^1 x [s(x)-\bar{s}(x)] dx, is sensitive to the dimuon data provided the theoretical QCD constraints are enforced. We use the Lagrange Multiplier method to probe the quality of the global fit as a function of [S−][S^-] and find −0.001<[S−]<0.004-0.001 < [S^-] < 0.004. Representative parton distribution sets spanning this range are given. Comparisons with previous work are made.Comment: 23 pages, 4 figures; expanded version for publicatio

    Examination of direct-photon and pion production in proton-nucleon collisions

    Full text link
    We present a study of inclusive direct-photon and pion production in hadronic interactions, focusing on a comparison of the ratio of gamma/pi0 yields with expectations from next-to-leading order perturbative QCD (NLO pQCD). We also examine the impact of a phenomenological model involving k_T smearing (which approximates effects of additional soft-gluon emission) on absolute predictions for photon and pion production and their ratio.Comment: 20 pages, 12 figures. Minor changes in wording and in figure

    A Field Range Bound for General Single-Field Inflation

    Full text link
    We explore the consequences of a detection of primordial tensor fluctuations for general single-field models of inflation. Using the effective theory of inflation, we propose a generalization of the Lyth bound. Our bound applies to all single-field models with two-derivative kinetic terms for the scalar fluctuations and is always stronger than the corresponding bound for slow-roll models. This shows that non-trivial dynamics can't evade the Lyth bound. We also present a weaker, but completely universal bound that holds whenever the Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page

    Inflationary perturbation theory is geometrical optics in phase space

    Full text link
    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ("transport equations"), analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar "delta N" Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, zeta, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of fNL in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.Comment: 22 pages, plus bibliography and appendix. v2: minor changes, matches version published in JCA

    Generic User Process Interface for Event Generators

    Get PDF
    Generic Fortran common blocks are presented for use by High Energy Physics event generators for the transfer of event configurations from parton level generators to showering and hadronization event generators.Comment: Physics at TeV Colliders II Workshop, Les Houches, France, May 2001 14 pages, 6 figure

    Transport equations for the inflationary trispectrum

    Get PDF
    We use transport techniques to calculate the trispectrum produced in multiple-field inflationary models with canonical kinetic terms. Our method allows the time evolution of the local trispectrum parameters, tauNL and gNL, to be tracked throughout the inflationary phase. We illustrate our approach using examples. We give a simplified method to calculate the superhorizon part of the relation between field fluctuations on spatially flat hypersurfaces and the curvature perturbation on uniform density slices, and obtain its third-order part for the first time. We clarify how the 'backwards' formalism of Yokoyama et al. relates to our analysis and other recent work. We supply explicit formulae which enable each inflationary observable to be computed in any canonical model of interest, using a suitable first-order ODE solver.Comment: 24 pages, plus references and appendix. v2: matches version published in JCAP; typo fixed in Eq. (54
    • …
    corecore