7,170 research outputs found
Uncertainties of predictions from parton distribution functions II: the Hessian method
We develop a general method to quantify the uncertainties of parton
distribution functions and their physical predictions, with emphasis on
incorporating all relevant experimental constraints. The method uses the
Hessian formalism to study an effective chi-squared function that quantifies
the fit between theory and experiment. Key ingredients are a recently developed
iterative procedure to calculate the Hessian matrix in the difficult global
analysis environment, and the use of parameters defined as components along
appropriately normalized eigenvectors. The result is a set of 2d Eigenvector
Basis parton distributions (where d=16 is the number of parton parameters) from
which the uncertainty on any physical quantity due to the uncertainty in parton
distributions can be calculated. We illustrate the method by applying it to
calculate uncertainties of gluon and quark distribution functions, W boson
rapidity distributions, and the correlation between W and Z production cross
sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix
changed to HEP standar
Neutrino Dimuon Production and the Strangeness Asymmetry of the Nucleon
We have performed the first global QCD analysis to include the CCFR and NuTeV
dimuon data, which provide direct constraints on the strange and anti-strange
parton distributions, and . To explore the strangeness
sector, we adopt a general parametrization of the non-perturbative functions satisfying basic QCD requirements. We find that the
strangeness asymmetry, as represented by the momentum integral , is sensitive to the dimuon data provided the
theoretical QCD constraints are enforced. We use the Lagrange Multiplier method
to probe the quality of the global fit as a function of and find
. Representative parton distribution sets spanning this
range are given. Comparisons with previous work are made.Comment: 23 pages, 4 figures; expanded version for publicatio
Examination of direct-photon and pion production in proton-nucleon collisions
We present a study of inclusive direct-photon and pion production in hadronic
interactions, focusing on a comparison of the ratio of gamma/pi0 yields with
expectations from next-to-leading order perturbative QCD (NLO pQCD). We also
examine the impact of a phenomenological model involving k_T smearing (which
approximates effects of additional soft-gluon emission) on absolute predictions
for photon and pion production and their ratio.Comment: 20 pages, 12 figures. Minor changes in wording and in figure
A Field Range Bound for General Single-Field Inflation
We explore the consequences of a detection of primordial tensor fluctuations
for general single-field models of inflation. Using the effective theory of
inflation, we propose a generalization of the Lyth bound. Our bound applies to
all single-field models with two-derivative kinetic terms for the scalar
fluctuations and is always stronger than the corresponding bound for slow-roll
models. This shows that non-trivial dynamics can't evade the Lyth bound. We
also present a weaker, but completely universal bound that holds whenever the
Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page
Inflationary perturbation theory is geometrical optics in phase space
A pressing problem in comparing inflationary models with observation is the
accurate calculation of correlation functions. One approach is to evolve them
using ordinary differential equations ("transport equations"), analogous to the
Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this
approach to the complete set of momentum space correlation functions. A formal
solution can be obtained using raytracing techniques adapted from geometrical
optics. We reformulate inflationary perturbation theory in this language, and
show that raytracing reproduces the familiar "delta N" Taylor expansion. Our
method produces ordinary differential equations which allow the Taylor
coefficients to be computed efficiently. We use raytracing methods to express
the gauge transformation between field fluctuations and the curvature
perturbation, zeta, in geometrical terms. Using these results we give a compact
expression for the nonlinear gauge-transform part of fNL in terms of the
principal curvatures of uniform energy-density hypersurfaces in field space.Comment: 22 pages, plus bibliography and appendix. v2: minor changes, matches
version published in JCA
Generic User Process Interface for Event Generators
Generic Fortran common blocks are presented for use by High Energy Physics
event generators for the transfer of event configurations from parton level
generators to showering and hadronization event generators.Comment: Physics at TeV Colliders II Workshop, Les Houches, France, May 2001
14 pages, 6 figure
Transport equations for the inflationary trispectrum
We use transport techniques to calculate the trispectrum produced in
multiple-field inflationary models with canonical kinetic terms. Our method
allows the time evolution of the local trispectrum parameters, tauNL and gNL,
to be tracked throughout the inflationary phase. We illustrate our approach
using examples. We give a simplified method to calculate the superhorizon part
of the relation between field fluctuations on spatially flat hypersurfaces and
the curvature perturbation on uniform density slices, and obtain its
third-order part for the first time. We clarify how the 'backwards' formalism
of Yokoyama et al. relates to our analysis and other recent work. We supply
explicit formulae which enable each inflationary observable to be computed in
any canonical model of interest, using a suitable first-order ODE solver.Comment: 24 pages, plus references and appendix. v2: matches version published
in JCAP; typo fixed in Eq. (54
- …