71,118 research outputs found

    Astronomy: Starbursts near and far

    Full text link
    Observations of intensely bright star-forming galaxies both close by and in the distant Universe at first glance seem to emphasize their similarity. But look a little closer, and differences emerge.Comment: 6 pages including 1 figur

    Analytic description of atomic interaction at ultracold temperatures II: Scattering around a magnetic Feshbach resonance

    Full text link
    Starting from a multichannel quantum-defect theory, we derive analytic descriptions of a magnetic Feshbach resonance in an arbitrary partial wave ll, and the atomic interactions around it. An analytic formula, applicable to both broad and narrow resonances of arbitrary ll, is presented for ultracold atomic scattering around a Feshbach resonance. Other related issues addressed include (a) the parametrization of a magnetic Feshbach resonance of arbitrary ll, (b) rigorous definitions of "broad" and "narrow" resonances of arbitrary ll and their different scattering characteristics, and (c) the tuning of the effective range and the generalized effective range by a magnetic field.Comment: 13 pages, 4 figure

    Effective nonlinear optical properties of composite media of graded spherical particles

    Full text link
    We have developed a nonlinear differential effective dipole approximation (NDEDA), in an attempt to investigate the effective linear and third-order nonlinear susceptibility of composite media in which graded spherical inclusions with weak nonlinearity are randomly embedded in a linear host medium. Alternatively, based on a first-principles approach, we derived exactly the linear local field inside the graded particles having power-law dielectric gradation profiles. As a result, we obtain also the effective linear dielectric constant and third-order nonlinear susceptibility. Excellent agreement between the two methods is numerically demonstrated. As an application, we apply the NDEDA to investigate the surface plasma resonant effect on the optical absorption, optical nonlinearity enhancement, and figure of merit of metal-dielectric composites. It is found that the presence of gradation in metal particles yields a broad resonant band in the optical region, and further enhances the figure of merit.Comment: 20 pages, 5 figure

    A consistent description of kinetic equation with triangle anomaly

    Full text link
    We provide a consistent description of the kinetic equation with triangle anomaly which is compatible with the entropy principle of the second law of thermodynamics and the charge/energy-momentum conservation equations. In general an anomalous source term is necessary to ensure that the equations for the charge and energy-momentum conservation are satisfied and that the correction terms of distribution functions are compatible to these equations. The constraining equations from the entropy principle are derived for the anomaly-induced leading order corrections to the particle distribution functions. The correction terms can be determined for minimum number of unknown coefficients in one charge and two charge cases by solving the constraining equations.Comment: RevTex 4, 11 pages; With minor changes: typos are corrected and one reference is added. Accepted version to PR

    Generalized modified gravity with the second order acceleration equation

    Full text link
    In the theories of generalized modified gravity, the acceleration equation is generally fourth order. So it is hard to analyze the evolution of the Universe. In this paper, we present a class of generalized modified gravity theories which have the acceleration equation of second order derivative. Then both the cosmic evolution and the weak-field limit of the theories are easily investigated. We find that not only the Big-bang singularity problem but also the current cosmic acceleration problem could be easily dealt with.Comment: 8 pages, 2 figures. To appear in Phys. Rev.

    Peltier effect in normal metal-insulator-heavy fermion metal junctions

    Get PDF
    A theoretical study has been undertaken of the Peltier effect in normal metal - insulator - heavy fermion metal junctions. The results indicate that, at temperatures below the Kondo temperature, such junctions can be used as electronic microrefrigerators to cool the normal metal electrode and are several times more efficient in cooling than the normal metal - heavy fermion metal junctions.Comment: 3 pages in REVTeX, 2 figures, to be published in Appl. Phys. Lett., April 7, 200
    • …
    corecore