142 research outputs found
Imaging geometry through dynamics: the observable representation
For many stochastic processes there is an underlying coordinate space, ,
with the process moving from point to point in or on variables (such as
spin configurations) defined with respect to . There is a matrix of
transition probabilities (whether between points in or between variables
defined on ) and we focus on its ``slow'' eigenvectors, those with
eigenvalues closest to that of the stationary eigenvector. These eigenvectors
are the ``observables,'' and they can be used to recover geometrical features
of
Relative momentum for identical particles
Possible definitions for the relative momentum of identical particles are
considered
Localization of thermal packets and metastable states in Sinai model
We consider the Sinai model describing a particle diffusing in a 1D random
force field. As shown by Golosov, this model exhibits a strong localization
phenomenon for the thermal packet: the disorder average of the thermal
distribution of the relative distance y=x-m(t), with respect to the
(disorder-dependent) most probable position m(t), converges in the limit of
infinite time towards a distribution P(y). In this paper, we revisit this
question of the localization of the thermal packet. We first generalize the
result of Golosov by computing explicitly the joint asymptotic distribution of
relative position y=x(t)-m(t) and relative energy u=U(x(t))-U(m(t)) for the
thermal packet. Next, we compute in the infinite-time limit the localization
parameters Y_k, representing the disorder-averaged probabilities that k
particles of the thermal packet are at the same place, and the correlation
function C(l) representing the disorder-averaged probability that two particles
of the thermal packet are at a distance l from each other. We moreover prove
that our results for Y_k and C(l) exactly coincide with the thermodynamic limit
of the analog quantities computed for independent particles at equilibrium in a
finite sample of length L. Finally, we discuss the properties of the
finite-time metastable states that are responsible for the localization
phenomenon and compare with the general theory of metastable states in glassy
systems, in particular as a test of the Edwards conjecture.Comment: 17 page
Metastable states in glassy systems
Truly stable metastable states are an artifact of the mean-field
approximation or the zero temperature limit. If such appealing concepts in
glass theory as configurational entropy are to have a meaning beyond these
approximations, one needs to cast them in a form involving states with finite
lifetimes.
Starting from elementary examples and using results of Gaveau and Schulman,
we propose a simple expression for the configurational entropy and revisit the
question of taking flat averages over metastable states. The construction is
applicable to finite dimensional systems, and we explicitly show that for
simple mean-field glass models it recovers, justifies and generalises the known
results. The calculation emphasises the appearance of new dynamical order
parameters.Comment: 4 fig., 20 pages, revtex; added references and minor change
Green's function for the Relativistic Coulomb System via Sum Over Perturbation Series
We evaluate the Green's function of the D-dimensional relativistic Coulomb
system via sum over perturbation series which is obtained by expanding the
exponential containing the potential term in the path integral
into a power series. The energy spectra and wave functions are extracted from
the resulting amplitude.Comment: 13 pages, ReVTeX, no figure
Spectral properties of zero temperature dynamics in a model of a compacting granular column
The compacting of a column of grains has been studied using a one-dimensional
Ising model with long range directed interactions in which down and up spins
represent orientations of the grain having or not having an associated void.
When the column is not shaken (zero 'temperature') the motion becomes highly
constrained and under most circumstances we find that the generator of the
stochastic dynamics assumes an unusual form: many eigenvalues become
degenerate, but the associated multi-dimensional invariant spaces have but a
single eigenvector. There is no spectral expansion and a Jordan form must be
used. Many properties of the dynamics are established here analytically; some
are not. General issues associated with the Jordan form are also taken up.Comment: 34 pages, 4 figures, 3 table
Dirac and Weyl Equations on a Lattice as Quantum Cellular Automata
A discretized time evolution of the wave function for a Dirac particle on a
cubic lattice is represented by a very simple quantum cellular automaton. In
each evolution step the updated value of the wave function at a given site
depends only on the values at the nearest sites, the evolution is unitary and
preserves chiral symmetry. Moreover, it is shown that the relationship between
Dirac particles and cellular automata operating on two component objects on a
lattice is indeed very close. Every local and unitary automaton on a cubic
lattice, under some natural assumptions, leads in the continuum limit to the
Weyl equation. The sum over histories is evaluated and its connection with path
integrals and theories of fermions on a lattice is outlined.Comment: 6, RevTe
Quantum-classical transition in Scale Relativity
The theory of scale relativity provides a new insight into the origin of
fundamental laws in physics. Its application to microphysics allows us to
recover quantum mechanics as mechanics on a non-differentiable (fractal)
spacetime. The Schrodinger and Klein-Gordon equations are demonstrated as
geodesic equations in this framework. A development of the intrinsic properties
of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads
us to a derivation of the Dirac equation within the scale-relativity paradigm.
The complex form of the wavefunction in the Schrodinger and Klein-Gordon
equations follows from the non-differentiability of the geometry, since it
involves a breaking of the invariance under the reflection symmetry on the
(proper) time differential element (ds - ds). This mechanism is generalized
for obtaining the bi-quaternionic nature of the Dirac spinor by adding a
further symmetry breaking due to non-differentiability, namely the differential
coordinate reflection symmetry (dx^mu - dx^mu) and by requiring invariance
under parity and time inversion. The Pauli equation is recovered as a
non-relativistic-motion approximation of the Dirac equation.Comment: 28 pages, no figur
Noise-induced switching between vortex states with different polarization in classical two-dimensional easy-plane magnets
In the 2-dimensional anisotropic Heisenberg model with XY-symmetry there are
non-planar vortices which exhibit a localized structure of the z-components of
the spins around the vortex center. We study how thermal noise induces a
transition of this structure from one polarization to the opposite one. We
describe the vortex core by a discrete Hamiltonian and consider a stationary
solution of the Fokker-Planck equation. We find a bimodal distribution function
and calculate the transition rate using Langer's instanton theory (1969). The
result is compared with Langevin dynamics simulations for the full many-spin
model.Comment: 15 pages, 4 figures, Phys. Rev. B., in pres
Switching between different vortex states in 2-dimensional easy-plane magnets due to an ac magnetic field
Using a discrete model of 2-dimensional easy-plane classical ferromagnets, we
propose that a rotating magnetic field in the easy plane can switch a vortex
from one polarization to the opposite one if the amplitude exceeds a threshold
value, but the backward process does not occur. Such switches are indeed
observed in computer simulations.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
- …