3,924 research outputs found

    Approximate Bayesian computation via the energy statistic

    Get PDF
    Approximate Bayesian computation (ABC) has become an essential part of the Bayesian toolbox for addressing problems in which the likelihood is prohibitively expensive or entirely unknown, making it intractable. ABC defines a pseudo-posterior by comparing observed data with simulated data, traditionally based on some summary statistics, the elicitation of which is regarded as a key difficulty. Recently, using data discrepancy measures has been proposed in order to bypass the construction of summary statistics. Here we propose to use the importance-sampling ABC (IS-ABC) algorithm relying on the so-called two-sample energy statistic. We establish a new asymptotic result for the case where both the observed sample size and the simulated data sample size increase to infinity, which highlights to what extent the data discrepancy measure impacts the asymptotic pseudo-posterior. The result holds in the broad setting of IS-ABC methodologies, thus generalizing previous results that have been established only for rejection ABC algorithms. Furthermore, we propose a consistent V-statistic estimator of the energy statistic, under which we show that the large sample result holds, and prove that the rejection ABC algorithm, based on the energy statistic, generates pseudo-posterior distributions that achieves convergence to the correct limits, when implemented with rejection thresholds that converge to zero, in the finite sample setting. Our proposed energy statistic based ABC algorithm is demonstrated on a variety of models, including a Gaussian mixture, a moving-average model of order two, a bivariate beta and a multivariate gg-and-kk distribution. We find that our proposed method compares well with alternative discrepancy measures.Comment: 25 pages, 6 figures, 5 table

    Branching ratio and CP asymmetry of Bsπ+πB_s \to \pi^+ \pi^- decays in the perturbative QCD approach

    Full text link
    In this paper, we calculate the decay rate and CP asymmetry of the Bsπ+πB_s \to \pi^+\pi^- decay in perturbative QCD approach with Sudakov resummation. Since none of the quarks in final states is the same as those of the initial BsB_s meson, this decay can occur only via annihilation diagrams in the standard model. Besides the current-current operators, the contributions from the QCD and electroweak penguin operators are also taken into account. We find that (a) the branching ratio is about 4×1074 \times 10^{-7}; (b) the penguin diagrams dominate the total contribution; and (c) the direct CP asymmetry is small in size: no more than 33% ; but the mixing-induced CP asymmetry can be as large as ten percent testable in the near future LHC-b experiments.Comment: 12 pages, 4 figures included, RevTe

    Pseudo-Killing Spinors, Pseudo-supersymmetric p-branes, Bubbling and Less-bubbling AdS Spaces

    Full text link
    We consider Einstein gravity coupled to an n-form field strength in D dimensions. Such a theory cannot be supersymmetrized in general, we nevertheless propose a pseudo-Killing spinor equation and show that the AdS X Sphere vacua have the maximum number of pseudo-Killing spinors, and hence are fully pseudo-supersymmetric. We show that extremal p-branes and their intersecting configurations preserve fractions of the pseudo-supersymmetry. We study the integrability condition for general (D,n) and obtain the additional constraints that are required so that the existence of the pseudo-Killing spinors implies the Einstein equations of motion. We obtain new pseudo-supersymmetric bubbling AdS_5 X S^5 spaces that are supported by a non-self-dual 5-form. This demonstrates that non-supersymmegtric conformal field theories may also have bubbling states of arbitrary droplets of free fermions in the phase space. We also obtain an example of less-bubbling AdS geometry in D=8, whose bubbling effects are severely restricted by the additional constraint arising from the integrability condition.Comment: typos corrected, extra comments and references added, version appeared in JHE

    Brane Worlds in Collision

    Get PDF
    We obtain an exact solution of the supergravity equations of motion in which the four-dimensional observed universe is one of a number of colliding D3-branes in a Calabi-Yau background. The collision results in the ten-dimensional spacetime splitting into disconnected regions, bounded by curvature singularities. However, near the D3-branes the metric remains static during and after the collision. We also obtain a general class of solutions representing pp-brane collisions in arbitrary dimensions, including one in which the universe ends with the mutual annihilation of a positive-tension and negative-tension 3-brane.Comment: RevTex, 4 pages, 1 figure, typos and minor errors correcte

    Annihilation Type Radiative Decays of BB Meson in Perturbative QCD Approach

    Full text link
    With the perturbative QCD approach based on kTk_T factorization, we study the pure annihilation type radiative decays B0ϕγB^0 \to \phi\gamma and B0J/ψγB^0\to J/\psi \gamma. We find that the branching ratio of B0ϕγB^0 \to \phi\gamma is (2.70.60.6+0.3+1.2)×1011(2.7^{+0.3+1.2}_{-0.6-0.6})\times10^{-11}, which is too small to be measured in the current BB factories of BaBar and Belle. The branching ratio of B0J/ψγB^0\to J/\psi \gamma is (4.50.50.6+0.6+0.7)×107({4.5^{+0.6+0.7}_{-0.5-0.6}})\times10^{-7}, which is just at the corner of being observable in the BB factories. A larger branching ratio BR(Bs0J/ψγ)5×106BR(B_s^0 \to J/\psi \gamma) \simeq 5 \times 10^{-6} is also predicted. These decay modes will help us testing the standard model and searching for new physics signals.Comment: 4 pages, revtex, with 1 eps figur

    Lambda and Anti-Lambda Hypernuclei in Relativistic Mean-field Theory

    Full text link
    Several aspects about Λ\Lambda-hypernuclei in the relativistic mean field theory, including the effective Λ\Lambda-nucleon coupling strengths based on the successful effective nucleon-nucleon interaction PK1, hypernuclear magnetic moment and Λˉ\bar\Lambda-hypernuclei, have been presented. The effect of tensor coupling in Λ\Lambda-hypernuclei and the impurity effect of Λˉ\bar\Lambda to nuclear structure have been discussed in detail.Comment: 8 pages, 2 figures, Proceedings of the Sendai International Symposium "Strangeness in Nuclear and Hadronic Systems SENDAI08

    General Kerr-NUT-AdS Metrics in All Dimensions

    Full text link
    The Kerr-AdS metric in dimension D has cohomogeneity [D/2]; the metric components depend on the radial coordinate r and [D/2] latitude variables \mu_i that are subject to the constraint \sum_i \mu_i^2=1. We find a coordinate reparameterisation in which the \mu_i variables are replaced by [D/2]-1 unconstrained coordinates y_\alpha, and having the remarkable property that the Kerr-AdS metric becomes diagonal in the coordinate differentials dy_\alpha. The coordinates r and y_\alpha now appear in a very symmetrical way in the metric, leading to an immediate generalisation in which we can introduce [D/2]-1 NUT parameters. We find that (D-5)/2 are non-trivial in odd dimensions, whilst (D-2)/2 are non-trivial in even dimensions. This gives the most general Kerr-NUT-AdS metric in DD dimensions. We find that in all dimensions D\ge4 there exist discrete symmetries that involve inverting a rotation parameter through the AdS radius. These symmetries imply that Kerr-NUT-AdS metrics with over-rotating parameters are equivalent to under-rotating metrics. We also consider the BPS limit of the Kerr-NUT-AdS metrics, and thereby obtain, in odd dimensions and after Euclideanisation, new families of Einstein-Sasaki metrics.Comment: Latex, 24 pages, minor typos correcte

    Smooth free involution of HCP3H{\Bbb C}P^3 and Smith conjecture for imbeddings of S3S^3 in S6S^6

    Full text link
    This paper establishes an equivalence between existence of free involutions on HCP3H{\Bbb C}P^3 and existence of involutions on S6S^6 with fixed point set an imbedded S3S^3, then a family of counterexamples of the Smith conjecture for imbeddings of S3S^3 in S6S^6 are given by known result on HCP3H{\Bbb C}P^3. In addition, this paper also shows that every smooth homotopy complex projective 3-space admits no orientation preserving smooth free involution, which answers an open problem [Pe]. Moreover, the study of existence problem for smooth orientation preserving involutions on HCP3H{\Bbb C}P^3 is completed.Comment: 10 pages, final versio

    Toda p-brane black holes and polynomials related to Lie algebras

    Full text link
    Black hole generalized p-brane solutions for a wide class of intersection rules are obtained. The solutions are defined on a manifold that contains a product of n - 1 Ricci-flat internal spaces. They are defined up to a set of functions H_s obeying non-linear differential equations equivalent to Toda-type equations with certain boundary conditions imposed. A conjecture on polynomial structure of governing functions H_s for intersections related to semisimple Lie algebras is suggested. This conjecture is proved for Lie algebras: A_m, C_{m+1}, m > 0. For simple Lie algebras the powers of polynomials coincide with the components of twice the dual Weyl vector in the basis of simple coroots. The coefficients of polynomials depend upon the extremality parameter \mu >0. In the extremal case \mu = 0 such polynomials were considered previously by H. L\"u, J. Maharana, S. Mukherji and C.N. Pope. Explicit formulas for A_2-solution are obtained. Two examples of A_2-dyon solutions, i.e. dyon in D = 11 supergravity with M2 and M5 branes intersecting at a point and Kaluza-Klein dyon, are considered.Comment: 24 pages, Latex, typos are eliminated, a correct relation on parameters of special block-orthogonal solution is added in third line after eq. (4.10
    corecore