8 research outputs found

    Realistic Elbow Flesh Deformation Based on Anthropometrical Data for Ergonomics Modeling

    Get PDF
    The human model for ergonomic simulation has improved in terms of its reliability and appearance and yet there seems to be less attention paid to create a realistic and accurate flesh deformation around the joint. This study, a part of ongoing research, proposes a combination of manual and automatic (3D body scanner) measurements to create a database for flesh deformation prediction i.e. flesh deformation area and cross section changes, around the elbow joint. The database consists of two race groups i.e., Caucasian and Asian (23 subjects, 11 males and 12 females), which were carefully chosen to represent a variety of height and body type. The prediction results for both flesh deformation area and cross section changes are discussed as well as their relevance for the next stage of the study

    Human-centred automation to simplify the path to social and economic sustainability

    Get PDF
    Musculoskeletal Disorders (MSDs) pose a serious threat to sustainability in manufacturing. In particular, this phenomenon impacts the sustainability indicators of worker health and safety and the Gross Domestic Product (GDP). Effective MSD prevention measures would therefore constitute a remarkable contribution to social and economic sustainability. This chapter provides first an outline of existing methods to prevent MSD at the workplace. Analysis of the approaches yields that effective solutions require earmarked finances as well as qualified personnel, both of which are not affordable for many companies. In pursuit of solutions, Human-centred Automation (HCA), a recent paradigm in manufacturing, proposes the design of manufacturing systems using intelligent technology to support the worker instead of replacing him/her. HCA has the unique potential of reducing the effort needed to implement MSD prevention strategies by simplifying the path to social and economic sustainability. This chapter demonstrates this process with the example of the “Working Posture Controller” (WPC), which illustrates how the HCA concept can be applied. Finally, the lessons learned from the case are outlined, providing a vision of how future workplaces can benefit from HCA

    Multi-objective optimisation of a logistics area in the context of factory layout planning

    No full text
    ABSTRACTThe manufacturing factory layout planning process is commonly supported by the use of digital tools, enabling creation and testing of potential layouts before being realised in the real world. The process relies on engineers’ experience and inputs from several cross-disciplinary functions, meaning that it is subjective, iterative and prone to errors and delays. To address this issue, new tools and methods are needed to make the planning process more objective, efficient and able to consider multiple objectives simultaneously. This work suggests and demonstrates a simulation-based multi-objective optimisation approach that assists the generation and assessment of factory layout proposals, where objectives and constraints related to safety regulations, workers’ well-being and walking distance are considered simultaneously. The paper illustrates how layout planning for a logistics area can become a cross-disciplinary and transparent activity, while being automated to a higher degree, providing objective results to facilitate informed decision-making
    corecore