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Abstract. The human model for ergonomic simulation has improved in terms 
of its reliability and appearance and yet there seems to be less attention paid to 
create a realistic and accurate flesh deformation around the joint.  This study, a 
part of ongoing research, proposes a combination of manual and automatic (3D 
body scanner) measurements to create a database for flesh deformation 
prediction i.e. flesh deformation area and cross section changes, around the 
elbow joint. The database consists of two race groups i.e., Caucasian and Asian 
(23 subjects, 11 males and 12 females), which were carefully chosen to 
represent a variety of height and body type.  The prediction results for both 
flesh deformation area and cross section changes are discussed as well as their 
relevance for the next stage of the study.  
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1   Introduction 

A common usage of human models in Ergonomics applications is to evaluate a 
product or workplace to accommodate people with diverse sizes and shapes.  Locket 
et al. (2005) pointed out that ergonomic human modeling tools were also used for 
visualization.  The visualization provided information about body posture, reach 
ability, field of view and clearances which served as a basis for ergonomics 
evaluation and decision making (Wegner et al., 2007).  A study by Lämkull et al. 
(2007) showed that the visualization fidelity did affect the user effectiveness in 
engaging with ergonomics applications.  They also argued that the request for a more 
human-like virtual human was present. This request was partly fulfilled by the recent 
development of Vis Jack which allows the incorporation of 3D body scanner data to 
generate a more accurate and realistic virtual human.  Despite this latest development, 
there seems to be a lack of attention paid to the development of a realistic and yet 
accurate flesh deformation around the joint which would be useful to address motion 
restriction due to clothes, gloves, etc.   



1.1   Related Studies 

A review of flesh deformation methods revealed a number of different approaches.  
The most realistic, but complicated and computationally demanding, was anatomic 
deformation.  This approach emphasized heavily on the exact and accurate recreation 
of the bones and body tissue to simulate the flesh deformation (Dong et al., 2002).  
Due to its high demand of computation, this approach was more likely suitable for 
simulations requiring high degrees of accuracy e.g., crash simulations.  Another 
approach was a physical deformation which consisted of a mass and spring system, 
derived from mechanical laws of particles (Vassilev and Spanlang, 2002).  Although 
this approach was less computationally demanding than the anatomical approach, it 
was still considered to be less suitable for real time application and was mainly for 
off-line simulation and animation (Hyun et al, 2005).  However, the geometric 
approach was the cheapest in terms of computational need and hence was widely used 
for various applications e.g. 3D animation packages.  One of the geometric approach 
variants commonly used was “skinning” in which the skin deformation was achieved 
by applying different weights to the skin vertices before undergoing rigid 
transformation driven by movement of the skeleton.  The major drawbacks of this 
approach were the lack of muscle bulging/swelling and collapsing joints for extreme 
positions which required user intervention to correct them.  Several studies were 
directed to overcome these problems which unfortunately increased the complexity 
and lessened the appeal of the skinning method itself (Mohr et al., 2003; Kavan and 
Žảra, 2005, Mohr and Gleicher, 2003). 

A recent development in deformation methods was the example based approach 
(Allen et al, 2002; Wang and Phillips, 2002).  This method involved training the 
skinning model by setting the weights such that they provided the closest possible 
geometry to a training set of example poses.  The drawbacks of this approach is the 
more examples poses, the more complex the motion representation would be.   

Shen and Thalmann (1996) and Hyun et al. (2005) proposed a different approach 
i.e. the sweep based approach, which was characterized by the usage of cross sections 
to reconstruct and express the deformation.  Hyun et al (2005) adopted this approach 
by using ellipses which fit tightly to the cross section and sweep them along the link 
between the joints.  These ellipses were then used to govern the deformation by 
changing its orientation, accordingly to the joint angle changes.  The advantage of 
using this approach is its ability to preserve the volume when no self intersection 
happens.  However, due to the collision detection algorithm, the interactive speed is 
slow and user intervention is sometimes needed while blending the body segments 
together. 

 Based on the review of the advantages and disadvantages of the existing 
approaches above, it was shown that the existing approaches focused largely on one 
of two areas: (i) the representation of a visually convincing human model, or (ii) the 
representation of an anatomically correct human model.  Both of these approaches 
have issues either with the need for user intervention to adjust the model to achieve a 
satisfying result or, exhibit a high computation cost, making them unsuitable for real 
time use.   

Supported by a TC2-NX12 3D body scanner, this research has developed a new 
method of flesh deformation around the joint, with the elbow as a starting point, that 



was automatic (minimum user intervention), realistic (visually) and accurate 
(dimensionally).  This paper addresses how the flesh deformation method could be 
applied for people with different anthropometric characteristics with minimum user 
interventions.  This feature was essential because the flesh deformation method was 
specially aimed for ergonomics applications which demand flexibility in simulating 
humans with diverse anthropometric characteristics. Further details of the flesh 
deformation method can be found in Hermawati and Marshall (2008).   A brief outline 
of the method follows.  

1.2   Flesh Deformation Method 

In order to deform the flesh around the elbow in any posture, the proposed method 
required an establishment of five cross sections and a profile of the arm at the so 
called “key postures”. The key postures were the arm in a full extension, 135o flexion, 
90o flexion and maximum flexion.   
 

   
Fig. 1.  Matching a 3D arm scan data with the photograph of the arm from sagitta

plane and locations of the five cross sections for a fully flexed arm. 

The five cross sections’ locations were determined by the flesh deformation 
the area bounded by where the lower and upper arm met while the arm as
maximum flexion (see Fig. 1).  These cross sections were centered at the ske
lay on the plane which was perpendicular to the skeleton, except for the elbow
which constantly changed according to the level of the arm’s flexion.     
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Fig. 2. The proposed flesh deformation around the elbow joint. 



The arm profile in the sagittal plane was also obtained for each key posture.  The 
far right image of Fig. 1 shows an example of arm profile for a fully flexed arm.  This 
information was then combined to produce the elbow flesh deformation at any flexion 
angle by means of linear interpolation.  The process is shown in the Fig. 2. 

1.3 Application of the Flesh Deformation Method for Wider Anthropometrical 
Range 

To enable the current method’s application to simulate flesh deformation for a wide 
anthropometric range, the flesh deformation area, the key posture’s cross sections and 
arm profiles had to be predicted.   Five inputs are required i.e. 3D arm scan in a fully 
extended supine posture, height, weight, race and gender.  The whole process is 
illustrated in Fig. 3.   A relationship between the flesh deformation area and body 
type/size is employed to predict the flesh deformation area of a 3D arm scan.  A 
template, which is created from a predetermined 3D scan of a fully extended arm, is 
matched to the new 3D arm scan. Using the information from the predicted flesh 
deformation area, five cross sections are sampled through template matching.    

    
 
 
 
 
 

 
 
 

Fig. 3.  Application of the flesh deformation method for wider anthropometrical range. 
 
To guide the deformation, a subject from the database that resembles closely to the 

sampled cross sections had to be established.  The database stores cross sections 
information of all key postures from a range of subjects (n = 23) i.e. 260 cross 
sections altogether.  Since the sampled cross sections assume full extension, only the 
cross sections of the fully extended arm from the database were required to determine 
the nearest subject.  Then, the remaining data in the database from this subject i.e., 
cross sections for 135o, 90o and maximum flexion, were used as a basis to predict 
135o, 90o and maximum flexion cross sections for the 3D arm scan.       

2   Methodology 

Twenty three subjects took part in this study and were grouped into 4 categories i.e. 
Asian females, Asian males, Caucasian males and Caucasian females.  Table 1 shows 
the mean and standard deviation of height, weight and BMI for each group. 

While the subject assumed a maximum flexion posture, markers were attached to 
the area where the lower and upper arm met and the distance of these markers to the 
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elbow crease were recorded as they changed for each key posture. Then, a physical 
measurement to capture the changes of cross sections in four key postures by circling 
a flexible wire around the arm was carried out.  The physical measurement was 
employed as an alternative approach of capturing the flesh deformation because of the 
inability of the 3D body scanner to capture the detail of the flesh deformation for an 
arm flexion ≥ 100º.  Five cross sections were obtained during the physical 
measurement.  The location of the cross sections were: 1) on the marker for the upper 
arm, 2) on the marker for the lower arm, 3) on the elbow/joint, 4) on the mid section 
between marker-joint for the upper arm and 5) on the mid section between marker-
joint for the lower arm.  Once the physical measurements were completed, a series of 
arm photographs with various flexion angles were taken from both the sagittal and the 
coronal plane.  The data collection was finished by scanning the subject’s arm with 
the 3D body scanner. 

Table 1.  The mean and standard deviation of height, weight and BMI for each group. 

 Asian females 
(n=6) 

Asian males 
(n=5) 

Caucasian Female  
(n=6) 

Caucasian Males 
(n=6) 

Height (cm) 155±7.27 169.75±7.08 164.83±9.13 180±5.99 
Weight (kg) 57.53±14.88 62.37±8.42 69.57±21.5 82.35±10.61 

BMI 23.86±6.02 22.1±3.23 25.31±6.81 25.48±4.74 
   
The first step of the data processing was to determine the orientation of the upper 

arm joint by matching the 3D arm scan to the coronal-sagittal photographs.  The joint 
was automatically generated by the 3D body scanner. With the help of the markers, 
the lower arm joint was created.  This process was then followed by identifying 
parameters for the flesh deformation area of each key posture.  For each key posture, 
four parameters were required i.e., the two farthest points of the flesh deformation 
area of both the upper (upper arm farthest–UAF) and lower arm (lower arm farthest–
LAF) as well as another two points  between UAF/LAF and the elbow joint (upper 
arm middle-UAM, lower arm middle-LAM).  In the initial anatomical posture, UAM 
and LAM was approximately located in the middle of UAF/LAF.  As the UAF and 
LAF changed its position in respect with the elbow joint, so did the UAM and LAM.    
Fig. 1 shows the result of matching the 3D arm scan and the locations of five cross 
sections for maximum flexion.  

Digitized and traced cross sections were orientated, positioned and adjusted 
manually, assisted by the 3D arm scans and the photographs.  16 points were sampled 
for every cross section and their distances towards the cross section center were 
calculated (δ1…16).  The same distances were also determined for the template cross 
sections.  For each cross section, its distance differences with its corresponding 
template was computed e.g., [∆UAF,135

o= UAF135
o(δ1…16) - UAFtemplate(δ1…16)].  The 

results were stored in the database as shown in Table 2 where N is the total number of 
subjects.  To compress the database size, Principal Component Analysis was applied. 
All data processing, apart from digitization and tracing which were processed with 
Corel Trace, were completed on Pro-Engineer WildFire 4.0.  The flesh deformation 
area prediction and the cross section prediction algorithm were performed with 
Matlab. 



 

Table 2.  Data arrangement in the database. 

Row 1 ∆subject1
UAF,full extension, ∆

subject1
UAF,135

o, ∆subject1
UAF,90

o, ∆subject1
UAF,max 

………………............. 

Row N ∆subjectN
UAF,full extension, ∆

subjectN
UAF,135

o, ∆subjectN
UAF,90

o, ∆subjectN
UAF,max 

………………............. 

Row Nx5 ∆subjectN
LAF,full extension, ∆

subjectN
LAF,135

o, ∆subjectN
LAF,90

o, ∆subjectN
LAF,max 

3   Results 

3.1   Flesh Deformation Area Prediction 

Data analysis was performed separately for each group to account for the effect of 
race and gender.  To simplify the prediction process, once the predicted UAF location 
was established, it was then used to generate the LAF location.  This decision was 
based on the finding that the relationship between the UAF and LAF locations could 
be represented linearly as shown in Fig. 4.  For each key posture, UAM and LAM 
locations were expressed as a fraction of UAF and LAF, respectively, and were 
influenced by the arm angle.  As an example, Fig. 5  shows the relationship between 
UAF and UAM for Asian female group.  
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Fig. 4. Linear relationship between UAF and LAF. 
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Fig. 5.  A relationship between the ratio of UAF/UAM and the arm angles. 



Two parameters, upper arm length and BMI, were utilized to predict the location of 
UAF by means of multiple regression.  These parameters were chosen to represent the 
effect of different body size and body type on the flesh deformation area. The error, 
the maximum of the absolute value of the deviation of the data from the model, was 
shown in Table 4.  Once the UAF/UAM for both full extension and flexion were 
found, the location of UAF/LAF was computed.  The entire process for the prediction 
of the flesh deformation area was shown in Fig. 6. 

 
  Table 3. The absolute value of the UAF location error for a fully extended and flexed arm. 
 
UAF Error (mm) Asian Females Asian Males Caucasian Females Caucasian Males 
Maximum extension 12.7957 10.421 22.8327 15.2706 
Maximum flexion 3.9011 1.7325 9.0095 13.3917 

 
 
 

 

 

Fig. 6. Entire process of the flesh deformation area prediction. 

The flesh deformation area prediction was tested on three new data i.e., one Asian 
female, one Asian male and one Caucasian male.  Table 4 showed the errors for each 
test data. 

Table 4.  Euclidian distance error of flesh deformation area prediction for three data test. 

 BMI Height 
(cm) 

Error (mm) 
Maximum extension Maximum flexion 

Upper arm Lower arm Upper arm Lower arm 
Asian female  20.45 165 0 2.57 2.68 2.58 
Asian male  22.03 170 23.89 20.8 10.4 7.83 
Caucasian male 23.33 177 0.53 0 4.16 7.99 

3.2 Cross Sections’ Prediction 

A template was matched to the 3D arm scan of a fully extended arm to obtain the 
cross sections at five locations.  To overcome frequent occurrence of noisy and 
missing data around the apex of the 3D arm scan, which otherwise affected the 
sampling outcome of UAM and UAF, sagittal and coronal profiles of the 3D arm scan 
were used to correct the UAM and UAF cross sections automatically.    

To simplify the cross section prediction process, all cross sections were 
transformed into a 2 dimensional coordinate system.  For the cross section prediction, 
gender differences were overlooked since an earlier observation demonstrated the 
irrelevance of gender on the shape of the cross sections.  Three different methods 
were applied to seek the best matched subject from the database.  Because the 
sampled cross sections were required from a fully extended 3D scan arm, only the 
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cross sections of the fully extended arm from the database were required to determine 
the best matched subject. 

For the upper part of the elbow, the relationship between UAF-UAM was 
employed to find the best matched subject from the database.  The cross section 
changes of the best matched subject were applied on the new 3D arm scan and 
followed by a scaling adjustment to accommodate for cross sections’ size difference.  
The relationship between UAM and UAF was defined as: 
 

Y_ratio =  (maximum UAF y value- minimum UAF y value)  . 
                (maximum UAM y value- minimum UAM y value)                (1) 
X_ratio = (maximum UAF x value- minimum UAF x value)  . 
                (maximum UAM x value- minimum UAM x value) 

 
For the lower part of the elbow and the elbow itself, Principal Component Analysis 

(PCA) was utilized to determine the best matched subject from the database.  PCA 
was useful to summarize features which distinguished cross sections from one subject 
to another.  PCA was applied for E and LAM cross sections after subtracting them 
with the corresponding template cross sections.  Matching was performed by 
comparing PCA values for LAM.  The subject with the closest PCA value in the 
database to the target value was selected.  Once the closest matched subject for LAM 
was found in the database, the LAF cross sections would be extracted from the same 
subject.  A scaling adjustment to accommodate for cross sections size difference was 
also applied for the prediction of the lower part of the elbow.   

The elbow cross section prediction was in a way similar as that of the prediction 
for the lower part of the elbow.  However, instead of using one subject to guide the 
prediction of the cross sections, a linear interpolation between two closest subjects 
was employed.  This step was necessary because the elbow joint shape was much 
more complex than that of the lower part of the elbow. 

 

 
Fig. 7.  The outcome of flesh deformation and cross sections prediction at three key postures 

of three different data test. 

The cross sections prediction was validated by comparing them with either cross 
sections of a 3D scan arm at available key posture or the photographs.  The 
comparison with the 3D scan arm was mostly available for 135o flexion and in some 
occasion for 90o flexion (the upper part of the elbow only).  For each cross section, 
the Euclidean distance difference between the predicted cross section and the 3D arm 
cross section were computed at 32 points to obtain the maximum absolute deviation 



and the deviation average.  The maximum absolute deviation was ± 5.46 mm and the 
average of the deviation was ± 1.96 mm. 

Images of the outcome of the flesh deformation and the cross sections prediction is 
shown in Fig. 7. 

4   Discussion 

The validation of flesh deformation area prediction shows a mixed outcome regarding 
its level of accuracy.  This might be caused partly by such a small number of samples 
in this study.  With a sample of ≈ 6 people in each group, there is a possibility that the 
true relationship between BMI, upper arm size and flesh deformation area is not 
correctly represented.  In addition to this, the flesh deformation area is largely 
affected by arm muscularity that neither the BMI nor the upper arm length properly 
capture.  Hence, there is a strong likelihood that additional parameters are required 
e.g. body type, skin fold measurement.  Another factor which might cause the mixed 
outcome is the fact that, in this study, the flesh deformation area was defined while 
the participants assumed a fully flexed elbow.  This meant that the range of motion of 
the elbow flexion would also influence the flesh deformation area and yet, for 
simplicity, a uniform range of elbow flexion was applied during data analysis and 
prediction.  In addition to this, no correlation between the elbow range of motion and 
BMI was made despite a study finding (Golden et al, 2008), which showed BMI was 
negatively correlated with the elbow flexion range.    

The small number of available data in the database might also cause the relatively 
low accuracy of the cross sections predictions.  Since the represented feature of the 
cross sections in the database was limited, it might lead to an incorrect choice of the 
best matched subject for the cross section prediction.  In addition to this, the 
combination of physical measurement and 3D arm scan data usage might be another 
factor which contributed to the low accuracy of the cross sections predictions 
although much care was taken to ensure the accuracy of the physical measurement by 
introducing the photographs for cross sections refinement.  Nonetheless, even with 
such a low number of data in the database to refer to, the result of this method 
demonstrated a potential for a further development.  This method could also be used 
for other simple joint such as the knee.  However, a complexity might arise for an 
application on a complex joint such as the shoulder.  In this study, even though there 
were only 23 participants involved, the amount of work that was undertaken to gather 
and analyze their data was quite substantial.  This might be seen as a drawback for a 
wider study.  However, it might be no longer a problem once the 3D body scanning 
capability has improved e.g. marker detection ability, better handling for data 
occlusion, better accuracy for joint allocation etc.  

  The next stage of the study is to analyze the arm profiles from the collected data 
and then establishing the prediction method of the arm profile for any 3D scan arm 
input. This step will be the last stage of the research and the overall validation for 
both the flesh deformation method and the flesh deformation prediction would then be 
validated. 



5   Conclusions 

A flesh deformation model, that can represent the deformation of the flesh 
deformation at the elbow join, has been developed.  The flesh deformation area and 
cross section prediction showed a positive result regarding its accuracy despite being 
based on a limited range of anthropometric data.  Furthermore, the prediction was 
acquired without user intervention.  The prediction result accuracy could be improved 
further by gathering a wider anthropometric data range.  This flesh deformation 
prediction fulfilled the identified ergonomics application requirements i.e., accurate, 
no user intervention and accommodating various anthropometric parameters.   
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