3,195,092 research outputs found

    The identification of physical close galaxy pairs

    Get PDF
    A classification scheme for close pairs of galaxies is proposed. The scheme is motivated by the fact that the majority of apparent close pairs are in fact wide pairs in three-dimensional space. This is demonstrated by means of numerical simulations of random samples of binary galaxies and the scrutiny of the resulting projected and spatial separation distributions. Observational strategies for classifying close pairs according to the scheme are suggested. As a result, physical (i.e., bound and spatially) close pairs are identified.Comment: 16 pages, 5 figures, accepted for publication in The Astronomical Journal, added text corrections on proof

    Coherent Acceleration of Material Wavepackets

    Get PDF
    We study the quantum dynamics of a material wavepacket bouncing off a modulated atomic mirror in the presence of a gravitational field. We find the occurrence of coherent accelerated dynamics for atoms. The acceleration takes place for certain initial phase space data and within specific windows of modulation strengths. The realization of the proposed acceleration scheme is within the range of present day experimental possibilities.Comment: 6 pages, 3 figures, NASA "Quantum-to-Cosmos" conference proceedings to be published in IJMP

    Generalized Emission Functions for Photon Emission from Quark-Gluon Plasma

    Get PDF
    The Landau-Pomeranchuk-Migdal effects on photon emission from the quark gluon plasma have been studied as a function of photon mass, at a fixed temperature of the plasma. The integral equations for the transverse vector function (f~(p~){\bf \tilde{f}(\tilde{p}_\perp)}) and the longitudinal function (g~(p~)\tilde{g}({\bf \tilde{p}_\perp})) consisting of multiple scattering effects are solved by the self consistent iterations method and also by the variational method for the variable set \{p0,q0,Q2p_0,q_0,Q^2\}, considering the bremsstrahlung and the aws\bf aws processes. We define four new dynamical scaling variables, xTbx^b_T,xTax^a_T,xLbx^b_L,xLax^a_L for bremsstrahlung and {\bf aws} processes and analyse the transverse and longitudinal components as a function of \{p0,q0,Q2p_0,q_0,Q^2\}. We generalize the concept of photon emission function and we define four new emission functions for massive photon emission represented by gTbg^b_T, gTag^a_T, gLbg^b_L, gLag^a_L. These have been constructed using the exact numerical solutions of the integral equations. These four emission functions have been parameterized by suitable simple empirical fits. In terms of these empirical emission functions, the virtual photon emission from quark gluon plasma reduces to one dimensional integrals that involve folding over the empirical gT,Lb,ag^{b,a}_{T,L} functions with appropriate quark distribution functions and the kinematic factors. Using this empirical emission functions, we calculated the imaginary part of the photon polarization tensor as a function of photon mass and energy.Comment: In nuclear physics journals and arxiv listings, my name used to appear as S.V.S. Sastry. Hereafter, my name will appear as, S.V. Suryanarayan

    Dynamic Structure Factor of Normal Fermi Gas from Collisionless to Hydrodynamic Regime

    Full text link
    The dynamic structure factor of a normal Fermi gas is investigated by using the moment method for the Boltzmann equation. We determine the spectral function at finite temperatures over the full range of crossover from the collisionless regime to the hydrodynamic regime. We find that the Brillouin peak in the dynamic structure factor exhibits a smooth crossover from zero to first sound as functions of temperature and interaction strength. The dynamic structure factor obtained using the moment method also exhibits a definite Rayleigh peak (/omega/sim0/omega /sim 0), which is a characteristic of the hydrodynamic regime. We compare the dynamic structure factor obtained by the moment method with that obtained from the hydrodynamic equations.Comment: 19 pages, 9 figure

    KΛ(1405)K\Lambda(1405) configuration of the KKˉNK\bar{K}N system

    Full text link
    We study the KΛ(1405)K\Lambda(1405) configuration of the KKˉNK\bar{K}N system by considering KπΣK\pi\Sigma as a coupled channel. We solve the Faddeev equations for these systems and find confirmation of the existence of a new NN^{*} resonance around 1920 MeV with Jπ=1/2+J^{\pi}=1/2^{+} predicted in a single-channel potential model and also found in a Faddeev calculation as an a0(980)Na_{0}(980)N state, with the a0(980)a_{0}(980) generated in the KKˉK\bar{K}, πη\pi\eta interaction.Comment: Published versio

    Space Shuttle Lightning Protection

    Get PDF
    The technology for lightning protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle Lightning Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the lightning-transient-damage susceptibility of solid-state electronics
    corecore