14,176 research outputs found
Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins
During division it is of primary importance for a cell to correctly determine
the site of cleavage. The bacterium Escherichia coli divides in the center,
producing two daughter cells of equal size. Selection of the center as the
correct division site is in part achieved by the Min-proteins. They oscillate
between the two cell poles and thereby prevent division at these locations.
Here, a phenomenological description for these oscillations is presented, where
lateral interactions between proteins on the cell membrane play a key role.
Solutions to the dynamic equations are compared to experimental findings. In
particular, the temporal period of the oscillations is measured as a function
of the cell length and found to be compatible with the theoretical prediction.Comment: 17 pages, 5 figures. Submitted to Physical Biolog
Mississippi River Research Conclusions Executive Summary
Briefing paper requested by Senator Bond detailing the conclusions from the Mississippi River research to date.Agricultural and Food Policy, Environmental Economics and Policy,
High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe
We report on the realization of a high quality distributed Bragg reflector
with both high and low refractive index layers lattice matched to ZnTe. Our
structure is grown by molecular beam epitaxy and is based on binary compounds
only. The high refractive index layer is made of ZnTe, while the low index
material is made of a short period triple superlattice containing MgSe, MgTe,
and ZnTe. The high refractive index step of Delta_n=0.5 in the structure
results in a broad stopband and the reflectivity coefficient exceeding 99% for
only 15 Bragg pairs.Comment: 4 pages, 3 figure
On the particle paths and the stagnation points in small-amplitude deep-water waves
In order to obtain quite precise information about the shape of the particle
paths below small-amplitude gravity waves travelling on irrotational deep
water, analytic solutions of the nonlinear differential equation system
describing the particle motion are provided. All these solutions are not closed
curves. Some particle trajectories are peakon-like, others can be expressed
with the aid of the Jacobi elliptic functions or with the aid of the
hyperelliptic functions. Remarks on the stagnation points of the
small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with
arXiv:1106.382
Universality in escape from a modulated potential well
We show that the rate of activated escape from a periodically modulated
potential displays scaling behavior versus modulation amplitude . For
adiabatic modulation of an optically trapped Brownian particle, measurements
yield with . The theory gives
in the adiabatic limit and predicts a crossover to scaling as
approaches the bifurcation point where the metastable state disappears.Comment: 4 pages, 3 figure
Persistent quantum interfering electron trajectories
The emission of above-ionization-threshold harmonics results from the
recombination of two electron wavepackets moving along a "short" and a "long"
trajectory in the atomic continuum. Attosecond pulse train generation has so
far been attributed to the short trajectory, attempted to be isolated through
targeted trajectory-selective phase matching conditions. Here, we provide
experimental evidence for the contribution of both trajectories to the harmonic
emission, even under phase matching conditions unfavorable for the long
trajectory. This is finger printed in the interference modulation of the
harmonic yield as a function of the driving laser intensity. The effect is also
observable in the sidebands yield resulting from the frequency mixing of the
harmonics and the driving laser field, an effect with consequences in
cross-correlation pulse metrology approaches.Comment: 13 pages, 3 figure
Observation of Lasing Mediated by Collective Atomic Recoil
We observe the buildup of a frequency-shifted reverse light field in a
unidirectionally pumped high- optical ring cavity serving as a dipole trap
for cold atoms. This effect is enhanced and a steady state is reached, if via
an optical molasses an additional friction force is applied to the atoms. We
observe the displacement of the atoms accelerated by momentum transfer in the
backscattering process and interpret our observations in terms of the
collective atomic recoil laser. Numerical simulations are in good agreement
with the experimental results.Comment: 4 pages, 3 figure
- …
