40 research outputs found
Mechanisms Involved in Nicotinic Acetylcholine Receptor-Induced Neurotransmitter Release from Sympathetic Nerve Terminals in the Mouse Vas Deferens
Prejunctional nicotinic acetylcholine receptors (nAChRs) amplify postganglionic sympathetic neurotransmission, and there are indications that intraterminal Ca2+ stores might be involved. However, the mechanisms by which nAChR activation stimulates neurotransmitter release at such junctions is unknown. Rapid local delivery (picospritzing) of the nAChR agonist epibatidine was combined with intracellular sharp microelectrode recording to monitor spontaneous and field-stimulation-evoked neurotransmitter release from sympathetic nerve terminals in the mouse isolated vas deferens. Locally applied epibatidine (1 µM) produced ‘epibatidine-induced depolarisations’ (EIDs) that were similar in shape to spontaneous excitatory junction potentials (SEJPs) and were abolished by nonselective nAChR antagonists and the purinergic desensitizing agonist α,β-methylene ATP. The amplitude distribution of EIDs was only slightly shifted towards lower amplitudes by the selective α7 nAChR antagonists α-bungarotoxin and methyllcaconitine, the voltage-gated Na+ channel blocker tetrodotoxin or by blocking voltage-gated Ca2+ channels with Cd2+. Lowering the extracellular Ca2+ concentration reduced the frequency of EIDs by 69%, but more surprisingly, the Ca2+-induced Ca2+ release blocker ryanodine greatly decreased the amplitude (by 41%) and the frequency of EIDs by 36%. Ryanodine had no effect on electrically-evoked neurotransmitter release, paired-pulse facilitation, SEJP frequency, SEJP amplitude or SEJP amplitude distribution. These results show that activation of non-α7 nAChRs on sympathetic postganglionic nerve terminals induces high-amplitude junctional potentials that are argued to represent multipacketed neurotransmitter release synchronized by intraterminal Ca2+-induced Ca2+ release, triggered by Ca2+ influx directly through the nAChR. This nAChR-induced neurotransmitter release can be targeted pharmacologically without affecting spontaneous or electrically-evoked neurotransmitter release
Clinical and mutational features of Vietnamese children with X-linked agammaglobulinemia
Conditions of formation, purification, and characterization of an alpha-galactosidase of Trichoderma reesei RUT C-30
Trichoderma reesei RUT C-30 formed an extracellular alpha-galactosidase when it was grown in a batch culture containing lactose or locust bean gum as a carbon source. Short-chain alpha-galactosides (melibiose, raffinose, stachyose), as well as the monosaccharides galactose, dulcitol, arabinose, and arabitol, also induced alpha-galactosidase activity both when they were used as carbon sources (at a concentration of 1%) in batch cultures and in resting mycelia (at concentrations in the millimolar range). The addition of 50 mM glucose did not affect the induction of alpha-galactosidase formation by galactose. alpha-Galactosidase from T. reesei RUT C-30 was purified to homogeneity from culture fluids of galactose-induced mycelia. The active enzyme was a 50 +/- 3-kDa, nonglycosylated monomer which had an isoelectric point of 5.2. It was active against several alpha-galactosides (p-nitrophenyl-alpha-D-galactoside, melibiose, raffinose, and stachyose) and galactomannan (locust bean gum) and was inhibited by the product galactose. It released galactose from locust bean gum and exhibited synergism with T. reesei beta-mannanase. Its activity was optimal at pH 4, and it displayed broad pH stability (pH 4 to 8). Its temperature stability was moderate (60 min at 50 degrees C resulted in recovery of 70% of activity), and its highest level of activity occurred at 60 degrees C. Its action on galactomannan was increased by the presence of beta-mannanase.</jats:p
Molecularly Designed Additives for Chemically Deconstructable Thermosets without Compromised Thermomechanical Properties
Rapid onset of bronchodilation in COPD: a placebo-controlled study comparing formoterol (Foradil®AerolizerTM) with salbutamol (VentodiskTM)
Organic cation transporter mRNA and function in the rat superior cervical ganglion
Reuptake of extracellular noradrenaline (NA) into superior cervical ganglion (SCG) neurones is mediated by means of the noradrenaline transporter (NAT, uptake 1). We now demonstrate by single-cell RT-PCR that mRNA of the organic cation transporter 3 (OCT3, uptake 2) occurs in rat SCG neurones as well. Furthermore, our RT-PCR analyses reveal the presence of mRNA for novel organic cation transporters 1 and 2 (OCTN1 and OCTN2), but not for OCT1 or OCT2 in the ganglion. Making use of the NAT as a powerful, neurone-specific transporter system, we loaded[3H]-N-methyl-4-phenylpyridinium ([3H]-MPP+) into cultured rat SCG neurones. The ensuing radioactive outflow from these cultures was enhanced by desipramine and reserpine, but reduced (in the presence of desipramine) by the OCT3 inhibitors cyanine 863, oestradiol and corticosterone. In contrast, cyanine 863 enhanced the radioactive outflow from cultures preloaded with [3H]-NA. Two observations suggest that a depletion of storage vesicles by cyanine 863 accounts for the latter phenomenon: first, the primary radioactive product isolated from supernatants of cultures loaded with [3H]-NA was the metabolite [3H]-DHPG; and second, inhibition of MAO significantly reduced the radioactive outflow in response to cyanine 863. The outflow of [3H]-MPP+ was significantly enhanced by MPP+, guanidine, choline and amantadine as potential substrates for OCT-related transmembrane transporters. However, desipramine at a low concentration essentially blocked the radioactive outflow induced by all of these substances with the exception of MPP+, indicating the NAT and not an OCT as their primary site of action. The MPP+-induced release of [3H]-MPP+ was fully prevented by a combined application of desipramine and cyanine 863. No trans-stimulation of [3H]-MPP+ outflow was observed by the OCTN1 and OCTN2 substrate carnitine at 100 μM. Our observations indicate an OCT-mediated transmembrane transport of [3H]-MPP+. Amongst the three OCTs expressed in the SCG, OCT3 best fits the profile of substrates and antagonists that cause trans-stimulation and trans-inhibition, respectively, of [3H]-MPP+ release
