7,015 research outputs found
Quantization of scalar perturbations in brane-world inflation
We consider a quantization of scalar perturbations about a de Sitter brane in
a 5-dimensional anti-de Sitter (AdS) bulk spacetime. We first derive the second
order action for a master variable for 5-dimensional gravitational
perturbations. For a vacuum brane, there is a continuum of normalizable
Kaluza-Klein (KK) modes with . There is also a light radion mode with
which satisfies the junction conditions for two branes, but is
non-normalizable for a single brane model. We perform the quantization of these
bulk perturbations and calculate the effective energy density of the projected
Weyl tensor on the barne. If there is a test scalar field perturbation on the
brane, the mode together with the zero-mode and an infinite ladder
of discrete tachyonic modes become normalizable in a single brane model. This
infinite ladder of discrete modes as well as the continuum of KK modes with
introduce corrections to the scalar field perturbations at first-order
in a slow-roll expansion. We derive the second order action for the
Mukhanov-Sasaki variable coupled to the bulk perturbations which is needed to
perform the quantization and determine the amplitude of scalar perturbations
generated during inflation on the brane.Comment: 14 page
Scalar perturbations in braneworld cosmology
We study the behaviour of scalar perturbations in the radiation-dominated era
of Randall-Sundrum braneworld cosmology by numerically solving the coupled bulk
and brane master wave equations. We find that density perturbations with
wavelengths less than a critical value (set by the bulk curvature length) are
amplified during horizon re-entry. This means that the radiation era matter
power spectrum will be at least an order of magnitude larger than the
predictions of general relativity (GR) on small scales. Conversely, we
explicitly confirm from simulations that the spectrum is identical to GR on
large scales. Although this magnification is not relevant for the cosmic
microwave background or measurements of large scale structure, it will have
some bearing on the formation of primordial black holes in Randall-Sundrum
models.Comment: 17 pages, 7 figure
Scalar cosmological perturbations in the Gauss-Bonnet braneworld
We study scalar cosmological perturbations in a braneworld model with a bulk
Gauss-Bonnet term. For an anti-de Sitter bulk, the five-dimensional
perturbation equations share the same form as in the Randall-Sundrum model,
which allows us to obtain metric perturbations in terms of a master variable.
We derive the boundary conditions for the master variable from the generalized
junction conditions on the brane. We then investigate several limiting cases in
which the junction equations are reduced to a feasible level. In the low energy
limit, we confirm that the standard result of four-dimensional Einstein gravity
is reproduced on large scales, whereas on small scales we find that the
perturbation dynamics is described by the four-dimensional Brans-Dicke theory.
In the high energy limit, all the non-local contributions drop off from the
junction equations, leaving a closed system of equations on the brane. We show
that, for inflation models driven by a scalar field on the brane, the
Sasaki-Mukhanov equation holds on the high energy brane in its original
four-dimensional form.Comment: 18 pages, v2: minor changes, reference added, v3: comments and
references added, accepted for publication in JCA
Non-Gaussian signatures of Tachyacoustic Cosmology
I investigate non-Gaussian signatures in the context of tachyacoustic
cosmology, that is, a noninflationary model with superluminal speed of sound. I
calculate the full non-Gaussian amplitude , its size ,
and corresponding shapes for a red-tilted spectrum of primordial scalar
perturbations. Specifically, for cuscuton-like models I show that , and the shape of its non-Gaussian amplitude peaks for
both equilateral and local configurations, the latter being dominant. These
results, albeit similar, are quantitatively distinct from the corresponding
ones obtained by Magueijo {\it{et. al}} in the context of superluminal bimetric
models.Comment: Some comments and references added. Matches the version published in
JCA
Bulk gravitational field and dark radiation on the brane in dilatonic brane world
We discuss the connection between the dark radiation on the brane and the
bulk gravitational field in a dilatonic brane world model proposed by Koyama
and Takahashi where the exact solutions for the five dimensional cosmological
perturbations can be obtained analytically. It is shown that the dark radiation
perturbation is related to the non-normalizable Kaluza-Klein (KK) mode of the
bulk perturbations. For the de Sitter brane in the anti-de Sitter bulk, the
squared mass of this KK mode is where is the Hubble parameter on
the brane. This mode is shown to be connected to the excitation of small black
hole in the bulk in the long wavelength limit. The exact solution for an
anisotropic stress on the brane induced by this KK mode is found, which plays
an important role in the calculation of cosmic microwave background radiation
anisotropies in the brane world.Comment: 11 page
Taxes, lawyers, and the decline of witch trials in France
This paper explores the rise of the fiscal state in the early modern period and its impact on legal capacity. To measure legal capacity, we establish that witchcraft trials were more likely to take place where the central state had weak legal insti- tutions. Combining data on the geographic distribution of witchcraft trials with unique panel data on tax receipts across 21 French regions, we find that the rise of the tax state can account for much of the decline in witch trials during this period. Further historical evidence supports our hypothesis that higher taxes led to better legal institutions.Rule of Law, Witchcraft, France, Institutions, Fiscal Capacity, Legal Capacity
Excised acoustic black holes: the scattering problem in the time domain
The scattering process of a dynamic perturbation impinging on a draining-tub
model of an acoustic black hole is numerically solved in the time domain.
Analogies with real black holes of General Relativity are explored by using
recently developed mathematical tools involving finite elements methods,
excision techniques, and constrained evolution schemes for strongly hyperbolic
systems. In particular it is shown that superradiant scattering of a
quasi-monochromatic wavepacket can produce strong amplification of the signal,
offering the possibility of a significant extraction of rotational energy at
suitable values of the angular frequency of the vortex and of the central
frequency of the wavepacket. The results show that theoretical tools recently
developed for gravitational waves can be brought to fruition in the study of
other problems in which strong anisotropies are present.Comment: 8 pages, 9 figure
Ekpyrotic collapse with multiple fields
A scale invariant spectrum of isocurvature perturbations is generated during collapse in the scaling solution in models where two or more fields have steep negative exponential potentials. The scale invariance of the spectrum is realised by a tachyonic instability in the isocurvature field. We show that this instability is due to the fact that the scaling solution is a saddle point in the phase space. The late time attractor is identified with a single field dominated ekpyrotic collapse in which a steep blue spectrum for isocurvature perturbations is found. Although quantum fluctuations do not necessarily to disrupt the classical solution, an additional preceding stage is required to establish classical homogeneity
More on ghosts in DGP model
It is shown by an explicit calculation that the excitations about the
self-accelerating cosmological solution of the Dvali--Gabadaze--Porrati model
contain a ghost mode. This raises serious doubts about viability of this
solution. Our analysis reveals the similarity between the quadratic theory for
the perturbations around the self-accelerating Universe and an Abelian gauge
model with two Stueckelberg fields.Comment: Revtex, 9 pages, no figure
Exactly solvable model for cosmological perturbations in dilatonic brane worlds
We construct a model where cosmological perturbations are analytically solved
based on dilatonic brane worlds. A bulk scalar field has an exponential
potential in the bulk and an exponential coupling to the brane tension. The
bulk scalar field yields a power-law inflation on the brane. The exact
background metric can be found including the back-reaction of the scalar field.
Then exact solutions for cosmological perturbations which properly satisfy the
junction conditions on the brane are derived. These solutions provide us an
interesting model to understand the connection between the behavior of
cosmological perturbations on the brane and the geometry of the bulk. Using
these solutions, the behavior of an anisotropic stress induced on the
inflationary brane by bulk gravitational fields is investigated.Comment: 30 pages, typos corrected, reference adde
- …
