8 research outputs found

    A Computational Study on the Role of Gap Junctions and Rod Ih Conductance in the Enhancement of the Dynamic Range of the Retina

    Get PDF
    Recent works suggest that one of the roles of gap junctions in sensory systems is to enhance their dynamic range by avoiding early saturation in the first processing stages. In this work, we use a minimal conductance-based model of the ON rod pathways in the vertebrate retina to study the effects of electrical synaptic coupling via gap junctions among rods and among AII amacrine cells on the dynamic range of the retina. The model is also used to study the effects of the maximum conductance of rod hyperpolarization activated current Ih on the dynamic range of the retina, allowing a study of the interrelations between this intrinsic membrane parameter with those two retina connectivity characteristics. Our results show that for realistic values of Ih conductance the dynamic range is enhanced by rod-rod coupling, and that AII-AII coupling is less relevant to dynamic range amplification in comparison with receptor coupling. Furthermore, a plot of the retina output response versus input intensity for the optimal parameter configuration is well fitted by a power law with exponent . The results are consistent with predictions of more theoretical works and suggest that the earliest expression of gap junctions along the rod pathways, together with appropriate values of rod Ih conductance, has the highest impact on vertebrate retina dynamic range enhancement

    Spatiotemporal Effects of Sonoporation Measured by Real-Time Calcium Imaging

    Full text link
    Published in PubMed Central on 01 March 2010To investigate the effects of sonoporation, spatiotemporal evolution of ultrasound-induced changes in intracellular calcium ion concentration ([Ca2+]i) was determined using real time fura-2AM fluorescence imaging. Monolayers of Chinese hamster ovary (CHO) cells were exposed to 1-MHz ultrasound tone burst (0.2 s, 0.45 MPa) in the presence of Optison™ microbubbles. At extracellular [Ca2+]o of 0.9 mM, ultrasound application generated both non-oscillating and oscillating (periods 12–30 s) transients (changes of [Ca2+]i in time) with durations of 100–180 s. Immediate [Ca2+]i transients after ultrasound application were induced by ultrasound-mediated microbubble–cell interactions. In some cases, the immediately-affected cells did not return to pre-ultrasound equilibrium [Ca2+]i levels, thereby indicating irreversible membrane damage. Spatial evolution of [Ca2+]i in different cells formed a calcium wave and was observed to propagate outward from the immediately-affected cells at 7–20 μm/s over a distance greater than 200 μm, causing delayed transients in cells to occur sometimes 60 s or more after ultrasound application. In calcium-free solution, ultrasound-affected cells did not recover, consistent with the requirement of extracellular Ca2+ for cell membrane recovery subsequent to sonoporation. In summary, ultrasound application in the presence of Optison™ microbubbles can generate transient [Ca2+]i changes and oscillations at a focal site and in surrounding cells via calcium waves that last longer than the ultrasound duration and spread beyond the focal site. These results demonstrate the complexity of downstream effects of sonoporation beyond the initial pore formation and subsequent diffusion-related transport through the cellular membraneNational Institutes of Health R01CA116592Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84355/1/nihms99796.pd

    Ultrasound-Induced Calcium Oscillations and Waves in Chinese Hamster Ovary Cells in the Presence of Microbubbles

    Get PDF
    This study investigated the effects of ultrasound on the intracellular [Ca2+] of Chinese hamster ovary cells in the presence of albumin-encapsulated Optison microbubbles. Cells were exposed to 1 MHz ultrasound (tone burst of 0.2 s duration, 0.45 MPa peak pressure) while immersed in solution of 0.9 mM Ca2+. Calcium imaging of the cells was performed using digital video fluorescence microscopy and Ca2+-indicator dye fura-2AM. Experimental evidence indicated that ultrasound caused a direct microbubble-cell interaction resulting in the breaking and eventual dissolution of the microbubble and concomitant permeabilization of the cells to Ca2+. These cells exhibited a large influx of Ca2+ over 3–4 s and did not return to their equilibrium levels. Subsequently, some cells exhibited one or more Ca2+ oscillations with the onset of oscillations delayed by 10–80 s after the ultrasound pulse. A variety of oscillations were observed including decaying oscillations returning to the baseline value over 35– 100 s, oscillations superimposed on a more gradual recovery over 150–200 s, and oscillations continued with increased amplitude caused by a second ultrasound tone burst. The delays in onset appeared to result from calcium waves that propagated across the cells after the application of the ultrasound pulse.NIH grant R01CA116592American Cancer Society Institutional Research Grant to Case Western Reserve UniversityPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84354/1/L29.pd

    Kinetics of Synaptic Transmission at Ribbon Synapses of Rods and Cones

    No full text

    Computational Models of Neural Retina

    No full text

    Molecular Mechanisms of Photoreceptor Synaptic Transmission

    No full text
    corecore