1,806 research outputs found

    Nature of segregation of reactants in diffusion controlled A+B reactions: Role of mobility in forming compact clusters

    Full text link
    We investigate the A+B=0 bimolecular chemical reaction taking place in low-dimensional spaces when the mobilities of the two reacting species are not equal. While the case of different reactant mobilities has been previously reported as not affecting the scaling of the reactant densities with time, but only the pre-exponential factor, the mechanism for this had not been explained before. By using Monte-Carlo simulations we show that the nature of segregation is very different when compared to the normal case of equal reactant mobilities. The clusters of the mobile species are statistically homogeneous and randomly distributed in space, but the clusters of the less mobile species are much more compact and restricted in space. Due to the asymmetric mobilities, the initial symmetric random density fluctuations in time turn into asymmetric density fluctuations. We explain this trend by calculating the correlation functions for the positions of particles for the several different cases

    Finite-Size Scaling Studies of Reaction-Diffusion Systems Part III: Numerical Methods

    Full text link
    The scaling exponent and scaling function for the 1D single species coagulation model (A+AA)(A+A\rightarrow A) are shown to be universal, i.e. they are not influenced by the value of the coagulation rate. They are independent of the initial conditions as well. Two different numerical methods are used to compute the scaling properties: Monte Carlo simulations and extrapolations of exact finite lattice data. These methods are tested in a case where analytical results are available. It is shown that Monte Carlo simulations can be used to compute even the correction terms. To obtain reliable results from finite-size extrapolations exact numerical data for lattices up to ten sites are sufficient.Comment: 19 pages, LaTeX, 5 figures uuencoded, BONN HE-94-0

    Diffusion-Limited Coalescence with Finite Reaction Rates in One Dimension

    Full text link
    We study the diffusion-limited process A+AAA+A\to A in one dimension, with finite reaction rates. We develop an approximation scheme based on the method of Inter-Particle Distribution Functions (IPDF), which was formerly used for the exact solution of the same process with infinite reaction rate. The approximation becomes exact in the very early time regime (or the reaction-controlled limit) and in the long time (diffusion-controlled) asymptotic limit. For the intermediate time regime, we obtain a simple interpolative behavior between these two limits. We also study the coalescence process (with finite reaction rates) with the back reaction AA+AA\to A+A, and in the presence of particle input. In each of these cases the system reaches a non-trivial steady state with a finite concentration of particles. Theoretical predictions for the concentration time dependence and for the IPDF are compared to computer simulations. P. A. C. S. Numbers: 82.20.Mj 02.50.+s 05.40.+j 05.70.LnComment: 13 pages (and 4 figures), plain TeX, SISSA-94-0

    Concentration for One and Two Species One-Dimensional Reaction-Diffusion Systems

    Full text link
    We look for similarity transformations which yield mappings between different one-dimensional reaction-diffusion processes. In this way results obtained for special systems can be generalized to equivalent reaction-diffusion models. The coagulation (A + A -> A) or the annihilation (A + A -> 0) models can be mapped onto systems in which both processes are allowed. With the help of the coagulation-decoagulation model results for some death-decoagulation and annihilation-creation systems are given. We also find a reaction-diffusion system which is equivalent to the two species annihilation model (A + B ->0). Besides we present numerical results of Monte Carlo simulations. An accurate description of the effects of the reaction rates on the concentration in one-species diffusion-annihilation model is made. The asymptotic behavior of the concentration in the two species annihilation system (A + B -> 0) with symmetric initial conditions is studied.Comment: 20 pages latex, uuencoded figures at the en

    Circadian Timing of Food Intake Contributes to Weight Gain

    Get PDF
    Studies of body weight regulation have focused almost entirely on caloric intake and energy expenditure. However, a number of recent studies in animals linking energy regulation and the circadian clock at the molecular, physiological, and behavioral levels raise the possibility that the timing of food intake itself may play a significant role in weight gain. The present study focused on the role of the circadian phase of food consumption in weight gain. We provide evidence that nocturnal mice fed a high‐fat diet only during the 12‐h light phase gain significantly more weight than mice fed only during the 12‐h dark phase. A better understanding of the role of the circadian system for weight gain could have important implications for developing new therapeutic strategies for combating the obesity epidemic facing the human population today

    Soluble two-species diffusion-limited Models in arbitrary dimensions

    Full text link
    A class of two-species ({\it three-states}) bimolecular diffusion-limited models of classical particles with hard-core reacting and diffusing in a hypercubic lattice of arbitrary dimension is investigated. The manifolds on which the equations of motion of the correlation functions close, are determined explicitly. This property allows to solve for the density and the two-point (two-time) correlation functions in arbitrary dimension for both, a translation invariant class and another one where translation invariance is broken. Systems with correlated as well as uncorrelated, yet random initial states can also be treated exactly by this approach. We discuss the asymptotic behavior of density and correlation functions in the various cases. The dynamics studied is very rich.Comment: 28 pages, 0 figure. To appear in Physical Review E (February 2001

    Dynamic Scaling of an Adsorption-Diffusion Process on Fractals

    Full text link
    A dynamic scaling of a diffusion process involving the Langmuir type adsorption is studied. We find dynamic scaling functions in one and two dimensions and compare them with direct numerical simulations, and we further study the dynamic scaling law on fractal surfaces. The adsorption-diffusion process obeys the fracton dynamics on the fractal surfaces.Comment: 9 pages, 7 figure

    Coupled Maps on Trees

    Get PDF
    We study coupled maps on a Cayley tree, with local (nearest-neighbor) interactions, and with a variety of boundary conditions. The homogeneous state (where every lattice site has the same value) and the node-synchronized state (where sites of a given generation have the same value) are both shown to occur for particular values of the parameters and coupling constants. We study the stability of these states and their domains of attraction. As the number of sites that become synchronized is much higher compared to that on a regular lattice, control is easier to effect. A general procedure is given to deduce the eigenvalue spectrum for these states. Perturbations of the synchronized state lead to different spatio-temporal structures. We find that a mean-field like treatment is valid on this (effectively infinite dimensional) lattice.Comment: latex file (25 pages), 4 figures included. To be published in Phys. Rev.

    Anisotropic Diffusion-Limited Reactions with Coagulation and Annihilation

    Full text link
    One-dimensional reaction-diffusion models A+A -> 0, A+A -> A, and $A+B -> 0, where in the latter case like particles coagulate on encounters and move as clusters, are solved exactly with anisotropic hopping rates and assuming synchronous dynamics. Asymptotic large-time results for particle densities are derived and discussed in the framework of universality.Comment: 13 pages in plain Te

    Equilibrium Properties of A Monomer-Monomer Catalytic Reaction on A One-Dimensional Chain

    Full text link
    We study the equilibrium properties of a lattice-gas model of an A+B0A + B \to 0 catalytic reaction on a one-dimensional chain in contact with a reservoir for the particles. The particles of species AA and BB are in thermal contact with their vapor phases acting as reservoirs, i.e., they may adsorb onto empty lattice sites and may desorb from the lattice. If adsorbed AA and BB particles appear at neighboring lattice sites they instantaneously react and both desorb. For this model of a catalytic reaction in the adsorption-controlled limit, we derive analytically the expression of the pressure and present exact results for the mean densities of particles and for the compressibilities of the adsorbate as function of the chemical potentials of the two species.Comment: 19 pages, 5 figures, submitted to Phys. Rev.
    corecore