131 research outputs found

    Superficial brachioradial artery (radial artery originating from the axillary artery): a case report and embryological background

    Get PDF
    A case of anomalous terminal branching of the axillary artery, concerning the variant called superficial brachioradial artery (arteria brachioradialis superficialis) was described, with special regard to its embryological origin. The left upper limb of a male cadaver was dissected in successive steps from the axillary fossa distally to the palmar region. A variant artery, stemming from the end of the third segment of the axillary artery, followed a superficial course distally. It skipped the cubital fossa, ran on the lateral side of the forearm, crossed ventrally to the palm, and terminated in the deep palmar arch. This vessel is a case of so-called “brachioradial artery” (inexactly called a “radial artery with a high origin”). The origin of the brachioradial artery directly from the axillary artery belongs to the rare variants of the arterial pattern of the upper limb. Its incidence is approximately 3%. Moreover, this vascular variant was associated with another one concerning the brachial plexus. The medial cutaneous nerve of the forearm joined the median nerve in the middle third of the arm and ran further distally as a common trunk, as the normal median nerve does. Anatomical knowledge of the axillary region is crucial for radiodiagnostic and surgical procedures, especially in cases of trauma. The superficially located artery brings an elevated risk of bleeding complications in unexpected situations

    Selective addressing of high-rank atomic polarization moments

    Get PDF
    We describe a method of selective generation and study of polarization moments of up to the highest rank κ=2F\kappa=2F possible for a quantum state with total angular momentum FF. The technique is based on nonlinear magneto-optical rotation with frequency-modulated light. Various polarization moments are distinguished by the periodicity of light-polarization rotation induced by the atoms during Larmor precession and exhibit distinct light-intensity and frequency dependences. We apply the method to study polarization moments of 87^{87}Rb atoms contained in a vapor cell with antirelaxation coating. Distinct ultra-narrow (1-Hz wide) resonances, corresponding to different multipoles, appear in the magnetic-field dependence of the optical rotation. The use of the highest-multipole resonances has important applications in quantum and nonlinear optics and in magnetometry.Comment: 5 pages, 6 figure

    Spin-axis relaxation in spin-exchange collisions of alkali atoms

    Get PDF
    We present calculations of spin-relaxation rates of alkali-metal atoms due to the spin-axis interaction acting in binary collisions between the atoms. We show that for the high-temperature conditions of interest here, the spin relaxation rates calculated with classical-path trajectories are nearly the same as those calculated with the distorted-wave Born approximation. We compare these calculations to recent experiments that used magnetic decoupling to isolate spin relaxation due to binary collisions from that due to the formation of triplet van-der-Waals molecules. The values of the spin-axis coupling coefficients deduced from measurements of binary collision rates are consistent with those deduced from molecular decoupling experiments. All the experimental data is consistent with a simple and physically plausible scaling law for the spin-axis coupling coefficients.Comment: text+1 figur

    Spin Relaxation Resonances Due to the Spin-Axis Interaction in Dense Rubidium and Cesium Vapor

    Get PDF
    Resonances in the magnetic decoupling curves for the spin relaxation of dense alkali-metal vapors prove that much of the relaxation is due to the spin-axis interaction in triplet dimers. Initial estimates of the spin-axis coupling coefficients for the dimers are 290 MHz for Rb; 2500 MHz for Cs.Comment: submitted to Physical Review Letters, text + 3 figure

    Inhibition of Fried Meat-Induced Colorectal DNA Damage and Altered Systemic Genotoxicity in Humans by Crucifera, Chlorophyllin, and Yogurt

    Get PDF
    Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 subjects were randomly assigned to dietary regimens containing meat cooked at either low (100°C) or high temperature (250°C), each for 2 weeks in a crossover design. The other 8 subjects were randomly assigned to dietary regimens containing the high-temperature meat diet alone or in combination with 3 putative mutagen inhibitors: cruciferous vegetables, yogurt, and chlorophyllin tablets, also in a crossover design. Subjects were nonsmokers, at least 18 years old, and not currently taking prescription drugs or antibiotics. We used the Salmonella assay to analyze the meat, urine, and feces for mutagenicity, and the comet assay to analyze rectal biopsies and peripheral blood lymphocytes for DNA damage. Low-temperature meat had undetectable levels of heterocyclic amines (HCAs) and was not mutagenic, whereas high-temperature meat had high HCA levels and was highly mutagenic. The high-temperature meat diet increased the mutagenicity of hydrolyzed urine and feces compared to the low-temperature meat diet. The mutagenicity of hydrolyzed urine was increased nearly twofold by the inhibitor diet, indicating that the inhibitors enhanced conjugation. Inhibitors decreased significantly the mutagenicity of un-hydrolyzed and hydrolyzed feces. The diets did not alter the levels of DNA damage in non-target white blood cells, but the inhibitor diet decreased nearly twofold the DNA damage in target colorectal cells. To our knowledge, this is the first demonstration that dietary factors can reduce DNA damage in the target tissue of fried-meat associated carcinogenesis.ClinicalTrials.gov NCT00340743
    corecore