94,923 research outputs found

    Asymptotic Inverse Problem for Almost-Periodically Perturbed Quantum Harmonic Oscillator

    Full text link
    Consider quantum harmonic oscillator, perturbed by an even almost-periodic complex-valued potential with bounded derivative and primitive. Suppose that we know the first correction to the spectral asymptotics {Δμn}n=0\{\Delta\mu_n\}_{n=0}^\infty (Δμn=μnμn0+o(n1/4)\Delta\mu_n=\mu_n-\mu_n^0+o(n^{-1/4}), where μn0\mu_n^0 and μn\mu_n is the spectrum of the unperturbed and the perturbed operators, respectively). We obtain the formula that recovers the frequencies and the Fourier coefficients of the perturbation.Comment: 6 page

    Interplay of Fulde-Ferrell-Larkin-Ovchinnikov and Vortex states in two-dimensional Superconductors

    Get PDF
    Clean superconductors with weakly coupled conducting planes have been suggested as promising candidates for observing the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. We consider here a layered superconductor in a magnetic field of arbitrary orientation with respect to the conducting plane. In this case there is competition of spin-pair-breaking and orbital-pair-breaking effects. In previous work, phase boundaries characterized by Landau quantum numbers n > 0 have been predicted. Here, we calculate the actual structure of the stable states below Hc2 by minimizing the free energy. We find several new order parameter structures differing from both the traditional Abrikosov and FFLO solutions. Some interesting unsolved questions appear in the limit of large n.Comment: 13 pages, 3 figure

    Small Satellite Industrial Base Study: Foundational Findings

    Get PDF
    This report documents findings from a Small Satellite (SmallSat) Industrial Base Study conducted by The Aerospace Corporation between November 2018 and September 2019. The primary objectives of this study were a) to gain a better understanding of the SmallSat communitys technical practices, engineering approaches, requirements flow-downs, and common processes and b) identify insights and recommendations for how the government can further capitalize on the strengths and capabilities of SmallSat offerings. In the context of this study, SmallSats are understood to weigh no more than 500 kg, as described in State of the Art Small Spacecraft Technology, NASA/TP-2018- 220027, December 2018. CubeSats were excluded from this study to avoid overlap and duplication of recently completed work or other studies already under way. The team also touched on differences between traditional space-grade and the emerging mid-grade and other non-space, alternate-grade EEEE (electrical, electronic, electromechanical, electro-optical) piece part categories. Finally, the participants sought to understand the potential effects of increased use of alternate-grade parts on the traditional space-grade industrial base. The study team was keenly aware that there are missions for which non-space grade parts currently are infeasible for the foreseeable future. National security, long-duration and high-reliability missions intolerant of risk are a few examples. The team sought to identify benefits of alternative parts and approaches that can be harnessed by the government to achieve greater efficiencies and capabilities without impacting mission success

    A note on the computation of geometrically defined relative velocities

    Full text link
    We discuss some aspects about the computation of kinematic, spectroscopic, Fermi and astrometric relative velocities that are geometrically defined in general relativity. Mainly, we state that kinematic and spectroscopic relative velocities only depend on the 4-velocities of the observer and the test particle, unlike Fermi and astrometric relative velocities, that also depend on the acceleration of the observer and the corresponding relative position of the test particle, but only at the event of observation and not around it, as it would be deduced, in principle, from the definition of these velocities. Finally, we propose an open problem in general relativity that consists on finding intrinsic expressions for Fermi and astrometric relative velocities avoiding terms that involve the evolution of the relative position of the test particle. For this purpose, the proofs given in this paper can serve as inspiration.Comment: 8 pages, 2 figure

    Recent ν\nus from IceCube

    Full text link
    IceCube is a 1 km3^3 neutrino detector now being built at the South Pole. Its 4800 optical modules will detect Cherenkov radiation from charged particles produced in neutrino interactions. IceCube will search for neutrinos of astrophysical origin, with energies from 100 GeV up to 101910^{19} eV. It will be able to separate νe\nu_e, νμ\nu_\mu and ντ\nu_\tau. In addition to detecting astrophysical neutrinos, IceCube will also search for neutrinos from WIMP annihilation in the Sun and the Earth, look for low-energy (10 MeV) neutrinos from supernovae, and search for a host of exotic signatures. With the associated IceTop surface air shower array, it will study cosmic-ray air showers. IceCube construction is now 50% complete. After presenting preliminary results from the partial detector, I will discuss IceCube's future plans.Comment: Invited talk presented at Neutrino 2008; 7 page

    Systematic study of high-pTp_T hadron and photon production with the PHENIX experiment

    Full text link
    The suppression of hadrons with large transverse momentum (pTp_{\rm T}) in central Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 200 GeV compared to a binary scaled p+p reference is one of the major discoveries at RHIC. To understand the nature of this suppression PHENIX has performed detailed studies of the energy and system-size dependence of the suppression pattern, including the first RHIC measurement near SPS energies. An additional source of information is provided by direct photons. Since they escape the medium basically unaffected they can provide a high pTp_{\rm T} baseline for hard-scattering processes. An overview of hadron production at high pTp_{\rm T} in different colliding systems and at energies from sNN=22.4200\sqrt{s_{\rm NN}} = 22.4 - 200 GeV will be given. In addition, the latest direct photon measurements by the PHENIX experiment shall be discussed.Comment: 6 pages, 3 figures, Proceeding for the Conference Strangeness in Quark Matter, Levoca, Slovakia, June 24-29, 200

    Principles for the design of advanced flight director systems based on the theory of manual control displays

    Get PDF
    Design and development of flight director systems based on theory of manual control display
    corecore