3,014 research outputs found

    Entropy Change through Rayleigh-B\'enard Convective Transition with Rigid Boundaries

    Full text link
    The previous investigation on Rayleigh-B\'enard convection of a dilute classical gas [T. Kita: J. Phys. Soc. Jpn. {\bf 75} (2006) 124005] is extended to calculate entropy change of the convective transition with the rigid boundaries. We obtain results qualitatively similar to those of the stress-free boundaries. Above the critical Rayleigh number, the roll convection is realized among possible steady states with periodic structures, carrying the highest entropy as a function of macroscopic mechanical variables.Comment: 5 pages, 4 figure

    A theory of new type of heavy-electron superconductivity in PrOs_4Sb_12: quadrupolar-fluctuation mediated odd-parity pairings

    Full text link
    It is shown that unconventional nature of superconducting state of PrOs_4Sb_12, a Pr-based heavy electron compound with the filled-Skutterudite structure, can be explained in a unified way by taking into account the structure of the crystalline-electric-field (CEF) level, the shape of the Fermi surface determined by the band structure calculation, and a picture of the quasiparticles in f2^{2}-configuration with magnetically singlet CEF ground state. Possible types of pairing are narrowed down by consulting recent experimental results. In particular, the chiral "p"-wave states such as p_x+ip_y is favoured under the magnetic field due to the orbital Zeeman effect, while the "p"-wave states with two-fold symmetery such as p_x can be stabilized by a feedback effect without the magnetic field. It is also discussed that the double superconducting transition without the magnetic field is possible due to the spin-orbit coupling of the "triplet" Cooper pairs in the chiral state.Comment: 12 pages, 2 figures, submitted to J. Phys.: Condens. Matter Lette

    Entropy and Spin Susceptibility of s-wave Type-II Superconductors near Hc2H_{c2}

    Get PDF
    A theoretical study is performed on the entropy SsS_{\rm s} and the spin susceptibility χs\chi_{\rm s} near the upper critical field Hc2H_{c2} of s-wave type-II superconductors with arbitrary impurity concentrations. The changes of these quantities through Hc2H_{c2} may be expressed as [Ss(T,B)Ss(T,0)]/[Sn(T)Ss(T,0)]=1αS(1B/Hc2)(B/Hc2)αS[S_{\rm s}(T,B)-S_{\rm s}(T,0)]/[S_{\rm n}(T)-S_{\rm s}(T,0)]=1-\alpha_{S}(1-B/H_{c2})\approx (B/H_{c2})^{\alpha_{S}}, for example, where BB is the average flux density and SnS_{\rm n} denotes entropy in the normal state. It is found that the slopes αS\alpha_{S} and αχ\alpha_{\chi} at T=0 are identical, connected directly with the zero-energy density of states, and vary from 1.72 in the dirty limit to 0.50.60.5\sim 0.6 in the clean limit. This mean-free-path dependence of αS\alpha_{S} and αχ\alpha_{\chi} at T=0 is quantitatively the same as that of the slope αρ(T=0)\alpha_{\rho}(T=0) for the flux-flow resistivity studied previously. The result suggests that Ss(B)S_{\rm s}(B) and χs(B)\chi_{\rm s}(B) near T=0 are convex downward (upward) in the dirty (clean) limit, deviating substantially from the linear behavior B/Hc2\propto B/H_{c2}. The specific-heat jump at Hc2H_{c2} also shows fairly large mean-free-path dependence.Comment: 8 pages, 5 figure

    Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

    Full text link
    Current-driven magnetization reversal in a ferromagnetic semiconductor based (Ga,Mn)As/GaAs/(Ga,Mn)As magnetic tunnel junction is demonstrated at 30 K. Magnetoresistance measurements combined with current pulse application on a rectangular 1.5 x 0.3 um^2 device revealed that magnetization switching occurs at low critical current densities of 1.1 - 2.2 x 10^5 A/cm^2 despite the presence of spin-orbit interaction in the p-type semiconductor system. Possible mechanisms responsible for the effect are discussed.Comment: 16 pages, 4 figure

    Self-Consistent Approximations for Superconductivity beyond the Bardeen-Cooper-Schrieffer Theory

    Full text link
    We develop a concise self-consistent perturbation expansion for superconductivity where all the pair processes are naturally incorporated without drawing "anomalous" Feynman diagrams. This simplification results from introducing an interaction vertex that is symmetric in the particle-hole indices besides the ordinary space-spin coordinates. The formalism automatically satisfies conservation laws, includes the Luttinger-Ward theory as the normal-state limit, and reproduces the Bardeen-Cooper-Schrieffer theory as the lowest-order approximation. It enables us to study the thermodynamic, single-particle, two-particle, and dynamical properties of superconductors with competing fluctuations based on a single functional Φ[G^]\Phi[\hat{G}] of Green's function G^\hat{G} in the Nambu space. Specifically, we derive closed equations in the FLEX-S approximation, i.e., the fluctuation exchange approximation for superconductivity with all the pair processes, which contains extra terms besides those in the standard FLEX approximation.Comment: 14 pages, 6 figure

    Quasiparticles of d-wave superconductors in finite magnetic fields

    Full text link
    We study quasiparticles of d-wave superconductors in the vortex lattice by self-consistently solving the Bogoliubov-de Gennes equations. It is found for a pure dx2y2d_{x^2-y^2} state that: (i) low-energy quasiparticle bands in the magnetic Brillouin zone have rather large dispersion even in low magnetic fields, indicating absense of bound states for an isolated vortex; (ii) in finite fields with kFξ0k_F \xi_0 small, the calculated tunneling conductance at the vortex core shows a double-peak structure near zero bias, as qualitatively consistent with the STM experiment by Maggio-Aprile et al. [Phys. Rev. Lett. {\bf 75} (1995) 2754]. We also find that mixing of a dxyd_{xy}- or an s-wave component, if any, develops gradually without transitions as the field is increased, having little effect on the tunneling spectra.Comment: 4 pages, 4 figures, LaTe
    corecore