21,921 research outputs found

    Ab-initio theory of metal-insulator interfaces in a finite electric field

    Full text link
    We present a novel technique for calculating the dielectric response of metal/insulator heterostructures. This scheme allows, for the first time, the fully first-principles calculation of the microscopic properties of thin-film capacitors at finite bias potential. The method can be readily applied to pure insulators, where it provides an interesting alternative to conventional finite-field techniques based on the Berry-phase formalism. We demonstrate the effectiveness of our method by performing comprehensive numerical tests on a model Ag/MgO/Ag heterostructure.Comment: 10 pages, 5 figures, major revisio

    Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory

    Full text link
    The methods of density-functional perturbation theory may be used to calculate various physical response properties of insulating crystals including elastic, dielectric, Born charge, and piezoelectric tensors. These and other important tensors may be defined as second derivatives of the total energy with respect to atomic-displacement, electric-field, or strain perturbations, or as mixed derivatives with respect to two of these perturbations. The resulting tensor quantities tend to be coupled in complex ways in polar crystals, giving rise to a variety of variant definitions. For example, it is generally necessary to distinguish between elastic tensors defined under different electrostatic boundary conditions, and between dielectric tensors defined under different elastic boundary conditions. Here, we describe an approach for computing all of these various response tensors in a unified and systematic fashion. Applications are presented for two materials, wurtzite ZnO and rhombohedral BaTiO3, at zero temperature.Comment: 14 pages. Uses REVTEX macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/xfw_sys/index.htm

    Vectorcardiographic changes during extended space flight

    Get PDF
    To assess the effects of space flight on cardiac electrical properties, vectorcardiograms were taken on the 9 Skylab astronauts during the flights of 28, 59, and 84 days. The Frank lead system was used and observations were made at rest; during 25%, 50% and 75% of maximum exercise; during a short pulse of exercise (150 watts, 2 minutes); and after exercise. Data from 131 in-flight tests were analyzed by computer and compared to preflight and postflight values. Statistically significant increase in QRS vector magnitude (six of nine crewmen); T vector magnitude (five of nine crewmen); and resting PR interval duration (six of nine crewmen) occurred. During exercise the PR interval did not differ from preflight. Exercise heart rates inflight were the same as preflight, but increased in the immediate postflight period. With the exception of the arrhythmias, no deleterious vectorcardiographic changes were observed during the Skylab missions

    Accurate polarization within a unified Wannier function formalism

    Full text link
    We present an alternative formalism for calculating the maximally localized Wannier functions in crystalline solids, obtaining an expression which is extremely simple and general. In particular, our scheme is exactly invariant under Brillouin zone folding, and therefore it extends trivially to the Gamma-point case. We study the convergence properties of the Wannier functions, their quadratic spread and centers as obtained by our simplified technique. We show how this convergence can be drastically improved by a simple and inexpensive ``refinement'' step, which allows for very efficient and accurate calculations of the polarization in zero external field.Comment: 9 pages, 4 figure

    Nonlocality of Kohn-Sham exchange-correlation fields in dielectrics

    Full text link
    The theory of the macroscopic field appearing in the Kohn-Sham exchange-correlation potential for dielectric materials, as introduced by Gonze, Ghosez and Godby, is reexamined. It is shown that this Kohn-Sham field cannot be determined from a knowledge of the local state of the material (local crystal potential, electric field, and polarization) alone. Instead, it has an intrinsically nonlocal dependence on the global electrostatic configuration. For example, it vanishes in simple transverse configurations of a polarized dielectric, but not in longitudinal ones.Comment: 4 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#dv_gg

    Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite

    Full text link
    The dependencies on strain and oxygen vacancies of the ferroelectric polarization and the weak ferromagnetic magnetization in the multiferroic material bismuth ferrite, BiFeO_3, are investigated using first principles density functional theory calculations. The electric polarization is found to be rather independent of strain, in striking contrast to most conventional perovskite ferroelectrics. It is also not significantly affected by oxygen vacancies, or by the combined presence of strain and oxygen vacancies. The magnetization is also unaffected by strain, however the incorporation of oxygen vacancies can alter the magnetization slightly, and also leads to the formation of Fe^{2+}. These results are discussed in light of recent experiments on epitaxial films of BiFeO_3 which reported a strong thickness dependence of both magnetization and polarization.Comment: 9 pages, 3 figure

    Fcc breathing instability in BaBiO_3 from first principles

    Full text link
    We present first-principles density-functional calculations using the local density approximation to investigate the structural instability of cubic perovskite BaBiO_3. This material might exhibit charge disproportionation and some evidence thereof has been linked to the appearance of an additional, fourth peak in the experimental IR spectrum. However, our results suggest that the origin of this additional peak can be understood within the picture of a simple structural instability. While the true instability consists of an oxygen-octahedra breathing distortion and a small octahedra rotation, we find that the breathing alone in a fcc-type cell doubling is sufficient to explain the fourth peak in the IR spectrum. Our results show that the oscillator strength of this particular mode is of the same order of magnitude as the other three modes, in agreement with experiment.Comment: submitted to PRB, completely revised version after referee repor
    corecore