26 research outputs found

    The complete mitogenome of the fairy shrimp Streptocephalus cafer (Lovén, 1847) (Crustacea: Branchiopoda: Anostraca) from an ephemeral pond in Botswana, southern Africa

    Get PDF
    Fairy shrimps (Anostraca) constitute an important component of seasonally aquatic habitats, but few complete mitochondrial genomes have been published for this group. Here, we report the mitogenome of a common southern African species, Streptocephalus cafer, from Botswana (accession number: MN720104). Low-coverage shotgun sequencing recovered two contigs 15653 bp and 1347 bp in length that are separated by a repetitive region of unknown length within the non-coding control region. The mitogenome’s GC content is 31.80%. Phylogenetic analysis using protein-coding genes confirms the sister taxon relationship of S. cafer with the only other congener whose mitogenome has been reconstructed to date, the Asian S. sirindhornae

    The complete mitogenome of Leptestheria brevirostris Barnard, 1924, a rock pool clam shrimp (Branchiopoda: Spinicaudata) from Central District, Botswana

    Get PDF
    Spinicaudatan clam shrimp are a widespread and diverse group of branchiopod crustaceans, yet few mitochondrial genomes have been published for this taxonomic group. Here, we present the mitogenome of Leptestheria brevirostris from a rock pool ecosystem in Botswana. Massively parallel sequencing of a single specimen facilitated the reconstruction of the species’ 15,579 bp circularized mitogenome. The reconstructed phylogenetic tree confirms that L. brevirostris forms a monophyletic group with other diplostracan branchiopods, and that these are the sister taxon to Notostraca. The mitogenome reconstructed here is the first to be reported from a leptestherid clam shrimp

    The complete mitogenome of an undescribed clam shrimp of the genus Gondwanalimnadia (Branchiopoda: Spinicaudata), from a temporary wetland in Central District, Botswana

    Get PDF
    Clam shrimps (Spinicaudata) are a widespread and diverse crustacean group that frequent temporary aquatic habitats, but few complete mitochondrial genomes have been published for this group. Here, we report the mitogenome of an undescribed Gondwanalimnadia species from Botswana. Raw sequences were assembled into a single circular genome with a total length of 15,663 bp. Thirteen protein-coding genes, 22 tRNAs, and 2 rRNAs were identified using the MITOS pipeline. The mitogenome’s GC content is 33.52%. Phylogenetic analysis using protein-coding genes confirmed that Gondwanalimnadia sp. is closely related to another member of the Limnadiidae, Limnadia lenticularis

    Mitochondrial DNA is unsuitable to test for isolation by distance

    Get PDF
    CITATION: Teske, P. R., et al. 2018. Mitochondrial DNA is unsuitable to test for isolation by distance. Scientific Reports, 8:8448, doi:10.1038/s41598-018-25138-9.The original publication is available at https://www.nature.comTests for isolation by distance (IBD) are the most commonly used method of assessing spatial genetic structure. Many studies have exclusively used mitochondrial DNA (mtDNA) sequences to test for IBD, but this marker is often in conflict with multilocus markers. Here, we report a review of the literature on IBD, with the aims of determining (a) whether significant IBD is primarily a result of lumping spatially discrete populations, and (b) whether microsatellite datasets are more likely to detect IBD when mtDNA does not. We also provide empirical data from four species in which mtDNA failed to detect IBD by comparing these with microsatellite and SNP data. Our results confirm that IBD is mostly found when distinct regional populations are pooled, and this trend disappears when each is analysed separately. Discrepancies between markers were found in almost half of the studies reviewed, and microsatellites were more likely to detect IBD when mtDNA did not. Our empirical data rejected the lack of IBD in the four species studied, and support for IBD was particularly strong for the SNP data. We conclude that mtDNA sequence data are often not suitable to test for IBD, and can be misleading about species’ true dispersal potential. The observed failure of mtDNA to reliably detect IBD, in addition to being a single-locus marker, is likely a result of a selection-driven reduction in genetic diversity obscuring spatial genetic differentiation.https://www.nature.com/articles/s41598-018-25138-9/Publisher's versio

    Expression and function of KCNH2 (HERG) in the human jejunum

    No full text
    Previous studies suggest that ether-a-go-go related gene ( ERG) KCNH2 potassium channels contribute to the control of motility patterns in the gastrointestinal tract of animal models. The present study examines whether these results can be translated into a role in human gastrointestinal muscles. Messages for two different variants of the KCNH2 gene were detected: KCNH2 V1 human ERG ( HERG) ( 28) and KCNH2 V2 (HERG(USO)) (13). The amount of V2 message was greater than V1 in both human jejunum and brain. The base-pair sequence that gives rise to domains S3-S5 of the channel was identical to that previously published for human KCNH2 V1 and V2. KCNH2 protein was detected immunohistochemically in circular and longitudinal smooth muscle and enteric neurons but not in interstitial cells of Cajal. In the presence of TTX ( 10(-6) M), atropine (10(-6) M). and L-nitroarginine (10(-4) M) human jejunal circular muscle strips contracted phasically (9 cycles/min) and generated slow waves with superimposed spikes. Low concentrations of the KCNH2 blockers E-4031 (10(-8) M) and MK-499 (3 x 10(-8) M) increased phasic contractile amplitude and the number of spikes per slow wave. The highest concentration of E-4031 (10(-6) M) produced a 10-20 mV depolarization, eliminated slow waves, and replaced phasic contractions with a small tonic contracture. E-4031 (10(-6) M) did not affect [C-14] ACh release from enteric neurons. We conclude that KCNH2 channels play a fundamental role in the control of motility patterns in human jejunum through their ability to modulate the electrical behavior of smooth muscle cells
    corecore