8,509 research outputs found

    Mode coupling theory in the FDR-preserving field theory of interacting Brownian particles

    Full text link
    We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory.Comment: version to be published in Fast Track Communication in Journal of Physics A:Math. Theo

    Non-Gaussianity from Baryon Asymmetry

    Full text link
    We study a scenario that large non-Gaussianity arises from the baryon asymmetry of the Universe. There are baryogenesis scenarios containing a light scalar field, which may result in baryonic isocurvature perturbations with some amount of non-Gaussianity. As an explicit example we consider the Affleck-Dine mechanism and show that a flat direction of the supersymmeteric standard model can generate large non-Gaussianity in the curvature perturbations, satisfying the observational constraints on the baryonic isocurvature perturbations. The sign of a non-linearity parameter, f_{NL}, is negative, if the Affleck-Dine mechanism accounts for the observed baryon asymmetry; otherwise it can be either positive or negative.Comment: 25 pages, 7 figures; minor correction, references added; version to appear in JCA

    General treatment of isocurvature perturbations and non-Gaussianities

    Full text link
    We present a general formalism that provides a systematic computation of the linear and non-linear perturbations for an arbitrary number of cosmological fluids in the early Universe going through various transitions, in particular the decay of some species (such as a curvaton or a modulus). Using this formalism, we revisit the question of isocurvature non-Gaussianities in the mixed inflaton-curvaton scenario and show that one can obtain significant non-Gaussianities dominated by the isocurvature mode while satisfying the present constraints on the isocurvature contribution in the observed power spectrum. We also study two-curvaton scenarios, taking into account the production of dark matter, and investigate in which cases significant non-Gaussianities can be produced.Comment: Substantial improvements with respect to the first version. In particular, we added a discussion on the confrontation of the models with future observational data. This version is accepted for publication in JCA

    Inhomogeneous baryogenesis, cosmic antimatter, and dark matter

    Full text link
    A model of inhomogeneous baryogenesis based on the Affleck and Dine mechanism is described. A simple coupling of the scalar baryon field to the inflaton allows for formation of astronomically significant bubbles with a large baryon (or antibaryon) asymmetry. During the farther evolution these domains form compact stellar-like objects, or lower density clouds, or primordial black holes of different size. According to the scenario, such high baryonic number objects occupy relatively small fraction of space but despite that they may significantly contribute to the cosmological mass density. For some values of parameters the model allows the possibility the whole dark matter in the universe to be baryonic. Furthermore, the model allows the existence of the antibaryonic B-bubbles, i.e. a significant fraction of the mass density in the universe can be in the form of the compact antimatter objects (e.g. anti-stars).Comment: 31 pages, 5 figures, three references are adde

    Spectrum of Background X-rays from Moduli Dark Matter

    Get PDF
    We examine the XX-ray spectrum from the decay of the dark-matter moduli with mass O(100)\sim {\cal O}(100)keV, in particular, paying attention to the line spectrum from the moduli trapped in the halo of our galaxy. It is found that with the energy resolution of the current experiments (10\sim 10%) the line intensity is about twice stronger than that of the continuum spectrum from the moduli that spread in the whole universe. Therefore, in the future experiments with higher energy resolutions it may be possible to detect such line photons. We also investigate the γ\gamma-ray spectrum emitted from the decay of the multi-GeV moduli. It is shown that the emitted photons may form MeV-bump in the γ\gamma-ray spectrum. We also find that if the modulus mass is of the order of 10 GeV, the emitted photons at the peak of the continuum spectrum loses their energy by the scattering and the shape of the spectrum is significantly changed, which makes the constraint weaker than that obtained in the previous works.Comment: 14 pages (RevTeX file) including four postscript figures, reviced version to be published in Physical Review

    Gapless Magnetic and Quasiparticle Excitations due to the Coexistence of Antiferromagnetism and Superconductivity in CeRhIn5_5 : A study of 115^{115}In-NQR under Pressure

    Full text link
    We report systematic measurements of ac-susceptibility, nuclear-quadrupole-resonance spectrum, and nuclear-spin-lattice-relaxation time (T1T_1) on the pressure (PP)- induced heavy-fermion (HF) superconductor CeRhIn5_5. The temperature (TT) dependence of 1/T11/T_1 at PP = 1.6 GPa has revealed that antiferromagnetism (AFM) and superconductivity (SC) coexist microscopically, exhibiting the respective transition at TN=2.8T_N = 2.8 K and TcMFT^{MF}_c = 0.9 K. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below Tconset=2T_c^{onset} = 2 K, but TcMF=0.9T_c^{MF} = 0.9 K, followed by a T1TT_1T = const law. These results point to the unconventional characteristics of SC coexisting with AFM. We highlight that both of the results deserve theoretical work on the gapless nature in low-lying excitation spectrum due to the coexistence of AFM and SC and the lack of the mean-field regime below Tconset=2T_c^{onset} = 2 K.Comment: 4pages,5figures,revised versio

    Polarization dependent Landau level crossing in a two-dimensional electron system in MgZnO/ZnO-heterostructure

    Get PDF
    We report electrical transport measurements in a tilted magnetic field on a high-mobility two-dimensional electron system confined at the MgZnO/ZnO heterointerface. The observation of multiple crossing events of spin-resolved Landau levels (LLs) enables the mapping of the sequence of electronic states. We further measure the renormalization of electron spin susceptibility at zero field and the susceptibility dependence on the electron spin polarization. The latter manifests the deviation from the Pauli spin susceptibility. As the result, the crossing of spin-resolved LLs shifts to smaller tilt angles and the first Landau level coincidence event is absent even when the magnetic field has only a perpendicular component to the 2DES plane.Comment: 5 pages, 4 figure

    Evidence for Uniform Coexistence of Ferromagnetism and Unconventional Superconductivity in UGe_2: A ^73Ge-NQR Study under Pressure

    Full text link
    We report on the itinerant ferromagnetic superconductor UGe_2 through ^73Ge-NQR measurements under pressure (P). The P dependence of the NQR spectrum signals a first-order transition from the low-temperature (T) and low-P ferromagnetic phase (FM2) to high-T and high-P one (FM1) around a critical pressure of P_x ~ 1.2 GPa. The superconductivity exhibiting a maximum value of T_sc=0.7 K at P_x ~ 1.2 GPa, was found to take place in connection with the P-induced first-order transition. The nuclear spin-lattice relaxation rate 1/T_1 has probed the ferromagnetic transition, exhibiting a peak at the Curie temperature as well as a decrease without the coherence peak below T_sc. These results reveal the uniformly coexistent phase of ferromagnetism and unconventional superconductivity with a line-node gap. We remark on an intimate interplay between the onset of superconductivity and the underlying electronic state for the ferromagnetic phases.Comment: 8 pages, 9 figures. to appear in J. Phys. Soc. JPN, 74 No.2 (2005
    corecore